• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فناوری‌های نوین غذایی
    • دوره 3, شماره 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فناوری‌های نوین غذایی
    • دوره 3, شماره 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    درجه بندی مغز گردو براساس اندازه و رنگ با استفاده از پردازش تصویر

    (ندگان)پدیدآور
    افکاری سیاح, امیرحسینراسخ, منصورطهماسبی, محمد
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    615.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله پژوهشی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    امروزه توسعه سیستم های هوشمندی که بتوانند در مراحل مختلف آماده سازی و فرآوری محصولات کشاورزی و مواد غذایی با کارآیی مناسب بکار روند از اولویت های تحقیقاتی در این حوزه به شمار میروند. بدین منظور در پژوهش حاضر آزمایش هایی به منظور بررسی عوامل موثر بر یک سامانه تشخیص مغزگردو براساس اندازه و رنگ (به روش استاندارد) اجرا شد. بررسی ها بر امکان تشخیص دسته های کیفی، شامل سه دسته "نیمه"،" ربعی" و" خرده" و سه دسته رنگی، شامل "کهربایی روشن"، "روشن" و "بسیار روشن" در یک رقم انجام شد. متغیرهای پیش بینی کننده شامل قطر کوچک و بزرگ، الگوریتم شناسایی و مولفه های رنگی Red، Green، Blue، Hue، Saturation، Value، L، a و b از سه مدل رنگی بود. در مقایسه دو روش نورپردازی مشخص شد که هر چند میانگین دقت تشخیص در نورپردازی از پایین (3/94%) نسبت به نورپردازی از بالا (91%) بیشتر است، اما امکان استخراج هم زمان مولفه های رنگی و ابعادی، بکارگیری این روش نورپردازی را موجه میسازد. نتایج همچنین نشان داد که دقت و سرعت تشخیص براساس اندازه به مراتب بیشتر از تشخیص دسته های رنگی است. به طوریکه می توان نمونه های نیمه (نیم-مغز) را با دقت 100% و در مدت زمان میانگین 31/0ثانیه از دسته های دیگر تشخیص داد. درحالی که بالاترین دقت در تشخیص مغزهای با رنگ روشن از دسته های دیگر 2%/76 و در مدت زمان 91/1 ثانیه بود. براساس نتایج تحلیل تشخیص خطی، با توجه به هم پوشانی داده های مدل های رنگی می توان صرفا از شاخص میزان روشنی در مدل HSV با دقت 81% و در مدت زمانی کمتر از 6/0 ثانیه برای تشخیص نمونه های بسیار روشن از دو دسته دیگر استفاده کرد. همچنین در مقایسه مدل های رنگی، به ترتیب مدل HSV و Lab از بالاترین و پایینترین دقت در طبقه بندی برخوردار بودند.بر اساس نتایج این تحقیق می‌توان از مولفه‌های رنگی و ابعادی برای تشخیص مغزگردو بر اساس روش استاندارد در مدت زمان کم‌تر از 2 ثانیه تحت نورپردازی از بالا استفاده نمود. از این اطلاعات می‌توان برای طراحی و توسعه سامانه­های درجه‌بندی مغز گردو در صنایع غذایی استقاده نمود.
    کلید واژگان
    مغزگردو
    تشخیص
    مولفه رنگی
    پردازش تصویر
    مهندسی صنایع غذایی

    شماره نشریه
    4
    تاریخ نشر
    2016-08-22
    1395-06-01
    ناشر
    ﺳﺎزﻣﺎن ﭘﮋوهشهای ﻋﻠﻤﯽ و ﺻﻨﻌﺘﯽ اﯾﺮان
    Iranian Research Organization for Science and Tecgnology
    سازمان پدید آورنده
    عضو هیئت علمی، گروه مهندسی مکانیک بیوسیستم، دانشکده علوم کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
    عضو هیئت علمی، گروه مهندسی مکانیک بیوسیستم، دانشکده علوم کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
    دانشجوی دکتری مکانیک بیوسیستم، گروه مهندسی مکانیک بیوسیستم، دانشکده علوم کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

    شاپا
    2476-4787
    2476-4795
    URI
    https://dx.doi.org/10.22104/jift.2016.300
    http://jift.irost.ir/article_300.html
    https://iranjournals.nlai.ir/handle/123456789/367623

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب