• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of System Management
    • Volume 5, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of System Management
    • Volume 5, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Comparison of Applying a Designed Model to Measure Credit Risk Between Melli and Mellat Banks

    (ندگان)پدیدآور
    Salari, ArdeshirVakilifard, HamidrezaTalebnia, Ghodrat-Allah
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    668.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The main purpose of this paper is providing a model to calculate the credit risk of Melli bank clients and implement it at Mellat Bank. Therefore, the present study uses a multi-layered neural network method. The statistical population of this research is all real and legal clients of Melli and Mellat banks. Sampling method used in this research is a simple random sampling method. Friedman test was used to calculate the required number of samples in a random sampling method from Cochran formula (1977) and Friedman test was used to rank the factors affecting the credit risk. Friedman test was also performed using data from a completed questionnaire of active experts at the Melli Bank. Based on the results obtained from Friedman test, five important factors in the credit risk of real clients of the Melli Bank of Iran, type of occupation, guarantee value, loan amount, having return checks, the balance average, and the value of the guarantee, the amount of the loan, the average of the balance, having returned checks and deferred loans are the most important factors affecting the credit risk of legal clients, which have been used as inputs in the neural network model. The results of credit risk prediction using the neural network showed that the designed model has a high ability to predict the credit risk of real and legal clients of the Melli bank, while it did not have this ability for the Mellat bank.
    کلید واژگان
    Credit Risk
    Real and Legal Clients
    Multilayer Feed-Forward
    Neural network

    شماره نشریه
    4
    تاریخ نشر
    2019-10-01
    1398-07-09
    ناشر
    Islamic Azad University Shiraz Branch
    سازمان پدید آورنده
    Department of Financial Management, Kish International Branch, Islamic Azad University, Kish, Iran
    Department of Accounting, Science and Research Branch, Islamic Azad University, Tehran, Iran
    Department of Accounting, Science and Research Branch, Islamic Azad University, Tehran, Iran

    شاپا
    2322-2301
    2538-1571
    URI
    http://sjsm.iaushiraz.ac.ir/article_671553.html
    https://iranjournals.nlai.ir/handle/123456789/115843

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب