A convex combinatorial property of compact sets in the plane and its roots in lattice theory
(ندگان)پدیدآور
Czédli, GáborKurusa, Árpádنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ for the more general case where $,mathcal U_0$ and $,mathcal  U_1$ are compact sets in the plane such that $,mathcal U_1$ is obtained from $,mathcal U_0$ by a positive homothety or by a translation. Also, we give a short survey to show how lattice theoretical antecedents, including a series of papers on planar semimodular lattices by G. Grätzer and E. Knapp, lead to our result.
کلید واژگان
Congruence latticeplanar semimodular lattice
convex hull
compact set
linebreak circle
combinatorial geometry
abstract convex geometry
anti-exchange property
تاریخ نشر
2019-07-011398-04-10
ناشر
Shahid Beheshti Universityسازمان پدید آورنده
Bolyai Institute, University of Szeged, Szeged, Aradi vértanúk tere 1, H6720 HungaryBolyai Institute, University of Szeged, Szeged, Aradi vértanúk tere 1, Hungary H6720
شاپا
2345-58532345-5861




