| dc.contributor.author | Czédli, Gábor | en_US | 
| dc.contributor.author | Kurusa, Árpád | en_US | 
| dc.date.accessioned | 1399-08-02T00:04:20Z | fa_IR | 
| dc.date.accessioned | 2020-10-23T00:04:21Z |  | 
| dc.date.available | 1399-08-02T00:04:20Z | fa_IR | 
| dc.date.available | 2020-10-23T00:04:21Z |  | 
| dc.date.issued | 2019-07-01 | en_US | 
| dc.date.issued | 1398-04-10 | fa_IR | 
| dc.date.submitted | 2018-07-09 | en_US | 
| dc.date.submitted | 1397-04-18 | fa_IR | 
| dc.identifier.citation | Czédli, Gábor, Kurusa, Árpád. (2019). A convex combinatorial property of compact sets in the plane and its roots in lattice theory. Categories and General Algebraic Structures with Applications, 11, 57-92. doi: 10.29252/cgasa.11.1.57 | en_US | 
| dc.identifier.issn | 2345-5853 |  | 
| dc.identifier.issn | 2345-5861 |  | 
| dc.identifier.uri | https://dx.doi.org/10.29252/cgasa.11.1.57 |  | 
| dc.identifier.uri | http://cgasa.sbu.ac.ir/article_82639.html |  | 
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/470624 |  | 
| dc.description.abstract | K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.<br />Here we prove the existence of such a $j$ and $k$ for the more general case where $,mathcal U_0$ and $,mathcal  U_1$ are compact sets in the plane such that $,mathcal U_1$ is obtained from $,mathcal U_0$ by a positive homothety or by a translation. <br />Also, we give a short survey to show how lattice theoretical antecedents, including a series of papers on planar semimodular lattices by G. Grätzer and E. Knapp, lead to our result. | en_US | 
| dc.format.extent | 862 |  | 
| dc.format.mimetype | application/pdf |  | 
| dc.language | English |  | 
| dc.language.iso | en_US |  | 
| dc.publisher | Shahid Beheshti University | en_US | 
| dc.relation.ispartof | Categories and General Algebraic Structures with Applications | en_US | 
| dc.relation.isversionof | https://dx.doi.org/10.29252/cgasa.11.1.57 |  | 
| dc.subject | Congruence lattice | en_US | 
| dc.subject | planar semimodular lattice | en_US | 
| dc.subject | convex hull | en_US | 
| dc.subject | compact set | en_US | 
| dc.subject | linebreak circle | en_US | 
| dc.subject | combinatorial geometry | en_US | 
| dc.subject | abstract convex geometry | en_US | 
| dc.subject | anti-exchange property | en_US | 
| dc.title | A convex combinatorial property of compact sets in the plane and its roots in lattice theory | en_US | 
| dc.type | Text | en_US | 
| dc.type | Research Paper | en_US | 
| dc.contributor.department | Bolyai Institute, University of Szeged, Szeged, Aradi vértanúk tere 1, H6720 Hungary | en_US | 
| dc.contributor.department | Bolyai Institute, University of Szeged, Szeged, Aradi vértanúk tere 1, Hungary H6720 | en_US | 
| dc.citation.volume | 11 |  | 
| dc.citation.spage | 57 |  | 
| dc.citation.epage | 92 |  | 
| nlai.contributor.orcid | 0000-0001-9990-3573 |  |