نمایش مختصر رکورد

dc.contributor.authorCzédli, Gáboren_US
dc.contributor.authorKurusa, Árpáden_US
dc.date.accessioned1399-08-02T00:04:20Zfa_IR
dc.date.accessioned2020-10-23T00:04:21Z
dc.date.available1399-08-02T00:04:20Zfa_IR
dc.date.available2020-10-23T00:04:21Z
dc.date.issued2019-07-01en_US
dc.date.issued1398-04-10fa_IR
dc.date.submitted2018-07-09en_US
dc.date.submitted1397-04-18fa_IR
dc.identifier.citationCzédli, Gábor, Kurusa, Árpád. (2019). A convex combinatorial property of compact sets in the plane and its roots in lattice theory. Categories and General Algebraic Structures with Applications, 11, 57-92. doi: 10.29252/cgasa.11.1.57en_US
dc.identifier.issn2345-5853
dc.identifier.issn2345-5861
dc.identifier.urihttps://dx.doi.org/10.29252/cgasa.11.1.57
dc.identifier.urihttp://cgasa.sbu.ac.ir/article_82639.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/470624
dc.description.abstractK. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.<br />Here we prove the existence of such a $j$ and $k$ for the more general case where $,mathcal U_0$ and $,mathcal  U_1$ are compact sets in the plane such that $,mathcal U_1$ is obtained from $,mathcal U_0$ by a positive homothety or by a translation. <br />Also, we give a short survey to show how lattice theoretical antecedents, including a series of papers on planar semimodular lattices by G. Grätzer and E. Knapp, lead to our result.en_US
dc.format.extent862
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahid Beheshti Universityen_US
dc.relation.ispartofCategories and General Algebraic Structures with Applicationsen_US
dc.relation.isversionofhttps://dx.doi.org/10.29252/cgasa.11.1.57
dc.subjectCongruence latticeen_US
dc.subjectplanar semimodular latticeen_US
dc.subjectconvex hullen_US
dc.subjectcompact seten_US
dc.subjectlinebreak circleen_US
dc.subjectcombinatorial geometryen_US
dc.subjectabstract convex geometryen_US
dc.subjectanti-exchange propertyen_US
dc.titleA convex combinatorial property of compact sets in the plane and its roots in lattice theoryen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentBolyai Institute, University of Szeged, Szeged, Aradi v&eacute;rtan&uacute;k tere 1, H6720 Hungaryen_US
dc.contributor.departmentBolyai Institute, University of Szeged, Szeged, Aradi v&eacute;rtan&uacute;k tere 1, Hungary H6720en_US
dc.citation.volume11
dc.citation.spage57
dc.citation.epage92
nlai.contributor.orcid0000-0001-9990-3573


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد