• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 3, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 3, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of Random Forest Regression in the Prediction of Ultimate Bearing Capacity of Strip Footing Resting on Dense Sand Overlying Loose Sand Deposit

    (ندگان)پدیدآور
    Dutta, RakeshRao, TammineniSharma, Ajay
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    710.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Note
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The paper presents the prediction of the ultimate bearing capacity of the strip footing resting on layered soil (dense sand overlying loose sand) using random forest regression (RFR). In this study, 181 data collected from literature were used. 71 % of the total data was randomly selected for training the model and the rest of the data were utilized for the testing purpose. The various input parameters were friction angle of the dense sand layer (f1), friction angle of the loose sand layer (f2), unit weight of the dense sand layer (g1), unit weight of the loose sand layer (g2), ratio of the thickness of the dense sand layer below base of the footing to the width of footing (H/B), ratio of the depth of the footing to the width of the footing (D/B) and (H+D)/B. Ultimate bearing capacity was the output in this study. Performance measures were used in order to make the comparison with the artificial neural network (ANN) and M5P model tree. The result of this study revealed that the performance of the RFR was superior to M5P and ANN. The results of the sensitivity analysis reveals that the unit weight and the friction angle of the loose sand layer were the most important parameters affecting the output ultimate bearing capacity of the strip footing resting on the layered soils.
    کلید واژگان
    Random forest regression
    Ultimate bearing capacity
    Layered sand
    M5P model tree
    Artificial Neural Network
    Sensitivity analysis
    Artificial Neural Networks

    شماره نشریه
    4
    تاریخ نشر
    2019-10-01
    1398-07-09
    ناشر
    Pouyan Press
    سازمان پدید آورنده
    Professor, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India
    Research scholar, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India
    PG Student, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India

    شاپا
    2588-2872
    URI
    https://dx.doi.org/10.22115/scce.2019.137910.1080
    http://www.jsoftcivil.com/article_89975.html
    https://iranjournals.nlai.ir/handle/123456789/44912

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب