نمایش مختصر رکورد

dc.contributor.authorDutta, Rakeshen_US
dc.contributor.authorRao, Tamminenien_US
dc.contributor.authorSharma, Ajayen_US
dc.date.accessioned1399-07-08T18:28:34Zfa_IR
dc.date.accessioned2020-09-29T18:28:34Z
dc.date.available1399-07-08T18:28:34Zfa_IR
dc.date.available2020-09-29T18:28:34Z
dc.date.issued2019-10-01en_US
dc.date.issued1398-07-09fa_IR
dc.date.submitted2018-06-28en_US
dc.date.submitted1397-04-07fa_IR
dc.identifier.citationDutta, Rakesh, Rao, Tammineni, Sharma, Ajay. (2019). Application of Random Forest Regression in the Prediction of Ultimate Bearing Capacity of Strip Footing Resting on Dense Sand Overlying Loose Sand Deposit. Journal of Soft Computing in Civil Engineering, 3(4), 28-40. doi: 10.22115/scce.2019.137910.1080en_US
dc.identifier.issn2588-2872
dc.identifier.urihttps://dx.doi.org/10.22115/scce.2019.137910.1080
dc.identifier.urihttp://www.jsoftcivil.com/article_89975.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/44912
dc.description.abstractThe paper presents the prediction of the ultimate bearing capacity of the strip footing resting on layered soil (dense sand overlying loose sand) using random forest regression (RFR). In this study, 181 data collected from literature were used. 71 % of the total data was randomly selected for training the model and the rest of the data were utilized for the testing purpose. The various input parameters were friction angle of the dense sand layer (<em>f</em><sub>1</sub>), friction angle of the loose sand layer (<em>f</em><sub>2</sub>), unit weight of the dense sand layer (<em>g</em><sub>1</sub>), unit weight of the loose sand layer (<em>g</em><sub>2</sub>), ratio of the thickness of the dense sand layer below base of the footing to the width of footing (<em>H/B</em>), ratio of the depth of the footing to the width of the footing (<em>D/B</em>) and (<em>H+D</em>)/<em>B</em>. Ultimate bearing capacity was the output in this study. Performance measures were used in order to make the comparison with the artificial neural network (ANN) and M5P model tree. The result of this study revealed that the performance of the RFR was superior to M5P and ANN. The results of the sensitivity analysis reveals that the unit weight and the friction angle of the loose sand layer were the most important parameters affecting the output ultimate bearing capacity of the strip footing resting on the layered soils.en_US
dc.format.extent709
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherPouyan Pressen_US
dc.relation.ispartofJournal of Soft Computing in Civil Engineeringen_US
dc.relation.isversionofhttps://dx.doi.org/10.22115/scce.2019.137910.1080
dc.subjectRandom forest regressionen_US
dc.subjectUltimate bearing capacityen_US
dc.subjectLayered sanden_US
dc.subjectM5P model treeen_US
dc.subjectArtificial Neural Networken_US
dc.subjectSensitivity analysisen_US
dc.subjectArtificial Neural Networksen_US
dc.titleApplication of Random Forest Regression in the Prediction of Ultimate Bearing Capacity of Strip Footing Resting on Dense Sand Overlying Loose Sand Depositen_US
dc.typeTexten_US
dc.typeResearch Noteen_US
dc.contributor.departmentProfessor, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, Indiaen_US
dc.contributor.departmentResearch scholar, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, Indiaen_US
dc.contributor.departmentPG Student, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, Indiaen_US
dc.citation.volume3
dc.citation.issue4
dc.citation.spage28
dc.citation.epage40
nlai.contributor.orcid0000-0002-4611-9950
nlai.contributor.orcid0000-0002-3332-8083


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد