• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Artificial Intelligence in Electrical Engineering
    • Volume 4, Issue 13
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Artificial Intelligence in Electrical Engineering
    • Volume 4, Issue 13
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

    (ندگان)پدیدآور
    Shayghan Gharamaleki, ParvanehSeyedarabi, Hadi
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    337.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person's face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and appropriate number of face features was considered and the best function for system identification rate. Then, face features were fed into the support vector machine (SVM) with one vs. all classification. At first, 2-Fold method was examined for images of training and test system. The results indicated that the rotation of the sets in identical classifications had no impact on the efficiency of radial basis function (RBF). It was observed that the precision increa sed in the 5-Fold method. Then, 10-Fold method was examined which indicated that the averag e recognition rate furthe r increased when compa red with 2-Fold and 10-Fold methods. The results revealed that as the rotation number increas es, the precision and efficiency of the proposed method for face recognition increases.
    کلید واژگان
    face recognition
    Eigenfeatures
    Eigenfaces
    Multi-Layer Perceptron (MLP)
    Support Vector Machines(SVM)
    Principal Component Analysis(PCA)
    Radial Basis Function(RBF)

    شماره نشریه
    13
    تاریخ نشر
    2015-06-01
    1394-03-11
    ناشر
    Ahar Branch,Islamic Azad University, Ahar,Iran

    شاپا
    2345-4652
    URI
    http://jaiee.iau-ahar.ac.ir/article_520439.html
    https://iranjournals.nlai.ir/handle/123456789/441114

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب