• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Electrical and Computer Engineering Innovations (JECEI)
    • Volume 8, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Electrical and Computer Engineering Innovations (JECEI)
    • Volume 8, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Action Change Detection in Video Based on HOG

    (ندگان)پدیدآور
    Fakhredanesh, M.Roostaie, S.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.475 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one action class. Therefore, we need to break down a video sequence into sub-sequences, each containing only a single action class. Methods: In this paper, we develop an unsupervised action change detection method to detect the time of actions change, without classifying the actions. In this method, a silhouette-based framework will be used for action representation. This representation uses xt patterns. The xt pattern is a selected frame of xty volume. This volume is achieved by rotating the traditional space-time volume and displacing its axes. In xty volume, each frame consists of two axes (x) and time (t), and y value specifies the frame number. Results: To test the performance of the proposed method, we created 105 artificial videos using the Weizmann dataset, as well as time-continuous camera-captured video. The experiments have been conducted on this dataset. The precision of the proposed method was 98.13% and the recall was 100%. Conclusion: The proposed unsupervised approach can detect action changes with a high precision. Therefore, it can be useful in combination with an action recognition method for designing an integrated action recognition system.
    کلید واژگان
    Artificial Intelligence
    Computer vision
    Machine Learning
    Video surveillance
    Motion analysis
    Computer Vision

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Shahid Rajaee Teacher Training University
    سازمان پدید آورنده
    Faculty of Electrical and Computer, Malek Ashtar University of Technology, Tehran, Iran
    Faculty of Electrical and Computer, Malek Ashtar University of Technology, Tehran, Iran

    شاپا
    2322-3952
    2345-3044
    URI
    https://dx.doi.org/10.22061/jecei.2020.6949.351
    http://jecei.sru.ac.ir/article_1445.html
    https://iranjournals.nlai.ir/handle/123456789/437520

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب