نمایش مختصر رکورد

dc.contributor.authorFakhredanesh, M.en_US
dc.contributor.authorRoostaie, S.en_US
dc.date.accessioned1399-07-30T18:14:54Zfa_IR
dc.date.accessioned2020-10-21T18:14:55Z
dc.date.available1399-07-30T18:14:54Zfa_IR
dc.date.available2020-10-21T18:14:55Z
dc.date.issued2020-01-01en_US
dc.date.issued1398-10-11fa_IR
dc.date.submitted2019-03-07en_US
dc.date.submitted1397-12-16fa_IR
dc.identifier.citationFakhredanesh, M., Roostaie, S.. (2020). Action Change Detection in Video Based on HOG. Journal of Electrical and Computer Engineering Innovations (JECEI), 8(1), 135-144. doi: 10.22061/jecei.2020.6949.351en_US
dc.identifier.issn2322-3952
dc.identifier.issn2345-3044
dc.identifier.urihttps://dx.doi.org/10.22061/jecei.2020.6949.351
dc.identifier.urihttp://jecei.sru.ac.ir/article_1445.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/437520
dc.description.abstract<strong>Background and Objectives</strong>: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one action class. Therefore, we need to break down a video sequence into sub-sequences, each containing only a single action class.<br /> <strong>Methods: </strong>In this paper, we develop an unsupervised action change detection method to detect the time of actions change, without classifying the actions. In this method, a silhouette-based framework will be used for action representation. This representation uses xt patterns. The xt pattern is a selected frame of xty volume. This volume is achieved by rotating the traditional space-time volume and displacing its axes. In xty volume, each frame consists of two axes (x) and time (t), and y value specifies the frame number.<br /> <strong>Results: </strong>To test the performance of the proposed method, we created 105 artificial videos using the Weizmann dataset, as well as time-continuous camera-captured video. The experiments have been conducted on this dataset. The precision of the proposed method was 98.13% and the recall was 100%.<br /> <strong>Conclusion:</strong> The proposed unsupervised approach can detect action changes with a high precision. Therefore, it can be useful in combination with an action recognition method for designing an integrated action recognition system.en_US
dc.format.extent1510
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahid Rajaee Teacher Training Universityen_US
dc.relation.ispartofJournal of Electrical and Computer Engineering Innovations (JECEI)en_US
dc.relation.isversionofhttps://dx.doi.org/10.22061/jecei.2020.6949.351
dc.subjectArtificial Intelligenceen_US
dc.subjectComputer visionen_US
dc.subjectMachine Learningen_US
dc.subjectVideo surveillanceen_US
dc.subjectMotion analysisen_US
dc.subjectComputer Visionen_US
dc.titleAction Change Detection in Video Based on HOGen_US
dc.typeTexten_US
dc.typeOriginal Research Paperen_US
dc.contributor.departmentFaculty of Electrical and Computer, Malek Ashtar University of Technology, Tehran, Iranen_US
dc.contributor.departmentFaculty of Electrical and Computer, Malek Ashtar University of Technology, Tehran, Iranen_US
dc.citation.volume8
dc.citation.issue1
dc.citation.spage135
dc.citation.epage144


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد