• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Civil Engineering Infrastructures Journal
    • Volume 47, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Civil Engineering Infrastructures Journal
    • Volume 47, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests

    (ندگان)پدیدآور
    Hassanlourad, MahmoudVosoughi, MaryamSarrafi, Arash
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    610.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Papers
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty) and three relative densities (%30, %50, and %90) were injected with the sodium silicate grout with three different concentrations (water to sodium silicate ratio of 0.33, 1, and 2). A multi-layer Perceptron type of the artificial neural network was trained and tested using the results of 138 experimental tests. The multi-layer Perceptron included one input layer, two hidden layers and one output layer. The input parameters consisted of initial relative densities of grouted samples, the average size of particles (D50), the ratio of the grout water to sodium silicate and the grout pressure. The output parameter was the grout injection radius. The results of the experimental tests showed that the radius of grout injection is a complicated function of the mentioned parameters. In addition, the results of the trained artificial neural network showed to be reasonably consistent with the experimental results.
    کلید واژگان
    Artificial Neural Network
    Chemical Grout
    Grout-Ability
    sandy soil

    شماره نشریه
    2
    تاریخ نشر
    2014-12-01
    1393-09-10
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Assistant Professor, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran.
    M.Sc. Student, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran.
    M.Sc. Student, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran.

    شاپا
    2322-2093
    2423-6691
    URI
    https://dx.doi.org/10.7508/ceij.2014.02.007
    https://ceij.ut.ac.ir/article_40871.html
    https://iranjournals.nlai.ir/handle/123456789/411208

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب