نمایش مختصر رکورد

dc.contributor.authorHassanlourad, Mahmouden_US
dc.contributor.authorVosoughi, Maryamen_US
dc.contributor.authorSarrafi, Arashen_US
dc.date.accessioned1399-07-09T11:53:43Zfa_IR
dc.date.accessioned2020-09-30T11:53:43Z
dc.date.available1399-07-09T11:53:43Zfa_IR
dc.date.available2020-09-30T11:53:43Z
dc.date.issued2014-12-01en_US
dc.date.issued1393-09-10fa_IR
dc.date.submitted2012-12-10en_US
dc.date.submitted1391-09-20fa_IR
dc.identifier.citationHassanlourad, Mahmoud, Vosoughi, Maryam, Sarrafi, Arash. (2014). Predicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests. Civil Engineering Infrastructures Journal, 47(2), 239-253. doi: 10.7508/ceij.2014.02.007en_US
dc.identifier.issn2322-2093
dc.identifier.issn2423-6691
dc.identifier.urihttps://dx.doi.org/10.7508/ceij.2014.02.007
dc.identifier.urihttps://ceij.ut.ac.ir/article_40871.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/411208
dc.description.abstractIn this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty) and three relative densities (%30, %50, and %90) were injected with the sodium silicate grout with three different concentrations (water to sodium silicate ratio of 0.33, 1, and 2). A multi-layer Perceptron type of the artificial neural network was trained and tested using the results of 138 experimental tests. The multi-layer Perceptron included one input layer, two hidden layers and one output layer. The input parameters consisted of initial relative densities of grouted samples, the average size of particles (D50), the ratio of the grout water to sodium silicate and the grout pressure. The output parameter was the grout injection radius. The results of the experimental tests showed that the radius of grout injection is a complicated function of the mentioned parameters. In addition, the results of the trained artificial neural network showed to be reasonably consistent with the experimental results.en_US
dc.format.extent609
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofCivil Engineering Infrastructures Journalen_US
dc.relation.isversionofhttps://dx.doi.org/10.7508/ceij.2014.02.007
dc.subjectArtificial Neural Networken_US
dc.subjectChemical Grouten_US
dc.subjectGrout-Abilityen_US
dc.subjectsandy soilen_US
dc.titlePredicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Testsen_US
dc.typeTexten_US
dc.typeResearch Papersen_US
dc.contributor.departmentAssistant Professor, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran.en_US
dc.contributor.departmentM.Sc. Student, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran.en_US
dc.contributor.departmentM.Sc. Student, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran.en_US
dc.citation.volume47
dc.citation.issue2
dc.citation.spage239
dc.citation.epage253


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد