• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Modeling and Simulation in Electrical and Electronics Engineering
    • Volume 1, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Modeling and Simulation in Electrical and Electronics Engineering
    • Volume 1, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Day-ahead Price Forecasting of Electricity Markets by a New Hybrid Forecast Method

    (ندگان)پدیدآور
    Abedinia, OveisAmjady, Nima
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    576.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Energy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, non-stationary, and time variant behavior of electricity price time series. Accordingly, in this paper a new strategy is proposed for electricity price forecast. The forecast strategy includes Wavelet Transform (WT), Auto-Regressive Integrated Moving Average (ARIMA) and Radial Basis Function Neural Networks (RBFN). Also, an intelligent algorithm is applied to optimize the RBFN structure, which adapts it to the specified training set, reduce computational complexity and avoids overfitting. In the proposed forecast strategy, the WT provides a set of better-behaved constitutive series, ARIMA generates a linear forecast and RBFN is developed as a tool for nonlinear pattern recognition to correct the forecast error. The proposed strategy is applied for price forecasting of electricity market of mainland Spain and its results are compared with the results of several other price forecast methods. These comparisons confirm the validity of the developed approach.
    کلید واژگان
    Wavelet Transformer
    Electricity Price Forecast
    ARIMA
    RBFN

    شماره نشریه
    1
    تاریخ نشر
    2015-02-01
    1393-11-12
    ناشر
    Semnan University
    سازمان پدید آورنده
    Department of Electrical Engineering, Semnan University, Semnan, Iran
    Department of Electrical Engineering, Semnan University, Semnan, Iran

    URI
    https://dx.doi.org/10.22075/mseee.2015.235
    https://mseee.semnan.ac.ir/article_235.html
    https://iranjournals.nlai.ir/handle/123456789/40663

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب