نمایش مختصر رکورد

dc.contributor.authorAbedinia, Oveisen_US
dc.contributor.authorAmjady, Nimaen_US
dc.date.accessioned1399-07-08T18:17:36Zfa_IR
dc.date.accessioned2020-09-29T18:17:36Z
dc.date.available1399-07-08T18:17:36Zfa_IR
dc.date.available2020-09-29T18:17:36Z
dc.date.issued2015-02-01en_US
dc.date.issued1393-11-12fa_IR
dc.date.submitted2014-04-29en_US
dc.date.submitted1393-02-09fa_IR
dc.identifier.citationAbedinia, Oveis, Amjady, Nima. (2015). Day-ahead Price Forecasting of Electricity Markets by a New Hybrid Forecast Method. Modeling and Simulation in Electrical and Electronics Engineering, 1(1), 1-7. doi: 10.22075/mseee.2015.235en_US
dc.identifier.urihttps://dx.doi.org/10.22075/mseee.2015.235
dc.identifier.urihttps://mseee.semnan.ac.ir/article_235.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/40663
dc.description.abstractEnergy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, non-stationary, and time variant behavior of electricity price time series. Accordingly, in this paper a new strategy is proposed for electricity price forecast. The forecast strategy includes Wavelet Transform (WT), Auto-Regressive Integrated Moving Average (ARIMA) and Radial Basis Function Neural Networks (RBFN). Also, an intelligent algorithm is applied to optimize the RBFN structure, which adapts it to the specified training set, reduce computational complexity and avoids overfitting. In the proposed forecast strategy, the WT provides a set of better-behaved constitutive series, ARIMA generates a linear forecast and RBFN is developed as a tool for nonlinear pattern recognition to correct the forecast error. The proposed strategy is applied for price forecasting of electricity market of mainland Spain and its results are compared with the results of several other price forecast methods. These comparisons confirm the validity of the developed approach.en_US
dc.format.extent576
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSemnan Universityen_US
dc.relation.ispartofModeling and Simulation in Electrical and Electronics Engineeringen_US
dc.relation.isversionofhttps://dx.doi.org/10.22075/mseee.2015.235
dc.subjectWavelet Transformeren_US
dc.subjectElectricity Price Forecasten_US
dc.subjectARIMAen_US
dc.subjectRBFNen_US
dc.titleDay-ahead Price Forecasting of Electricity Markets by a New Hybrid Forecast Methoden_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentDepartment of Electrical Engineering, Semnan University, Semnan, Iranen_US
dc.contributor.departmentDepartment of Electrical Engineering, Semnan University, Semnan, Iranen_US
dc.citation.volume1
dc.citation.issue1
dc.citation.spage1
dc.citation.epage7


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد