Adjacent vertex distinguishing acyclic edge coloring of the Cartesian product of graphs
(ندگان)پدیدآور
Mousavi, Fatemeh SadatNoori, Massomehنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $G$ be a graph and $chi^{prime}_{aa}(G)$ denotes the minimum number of colors required for an acyclic edge coloring of $G$ in which no two adjacent vertices are incident to edges colored with the same set of colors. We prove a general bound for $chi^{prime}_{aa}(Gsquare H)$ for any two graphs $G$ and $H$. We also determine exact value of this parameter for the Cartesian product of two paths, Cartesian product of a path and a cycle, Cartesian product of two trees, hypercubes. We show that $chi^{prime}_{aa}(C_msquare C_n)$ is at most $6$ fo every $mgeq 3$ and $ngeq 3$. Moreover in some cases we find the exact value of $chi^{prime}_{aa}(C_msquare C_n)$.
کلید واژگان
Acyclic edge coloringadjacent vertex distinguishing acyclic edge coloring
adjacent vertex distinguishing acyclic edge chromatic number
05C15 Coloring of graphs and hypergraphs
شماره نشریه
2تاریخ نشر
2017-06-011396-03-11
ناشر
University of Isfahanسازمان پدید آورنده
University of ZanjanUniversity of Zanjan
شاپا
2251-86572251-8665




