| dc.contributor.author | Mousavi, Fatemeh Sadat | en_US | 
| dc.contributor.author | Noori, Massomeh | en_US | 
| dc.date.accessioned | 1399-07-09T11:37:27Z | fa_IR | 
| dc.date.accessioned | 2020-09-30T11:37:27Z |  | 
| dc.date.available | 1399-07-09T11:37:27Z | fa_IR | 
| dc.date.available | 2020-09-30T11:37:27Z |  | 
| dc.date.issued | 2017-06-01 | en_US | 
| dc.date.issued | 1396-03-11 | fa_IR | 
| dc.date.submitted | 2016-01-13 | en_US | 
| dc.date.submitted | 1394-10-23 | fa_IR | 
| dc.identifier.citation | Mousavi, Fatemeh Sadat, Noori, Massomeh. (2017). Adjacent vertex distinguishing acyclic edge coloring of the Cartesian product of graphs. Transactions on Combinatorics, 6(2), 19-30. doi: 10.22108/toc.2017.20988 | en_US | 
| dc.identifier.issn | 2251-8657 |  | 
| dc.identifier.issn | 2251-8665 |  | 
| dc.identifier.uri | https://dx.doi.org/10.22108/toc.2017.20988 |  | 
| dc.identifier.uri | http://toc.ui.ac.ir/article_20988.html |  | 
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/405799 |  | 
| dc.description.abstract | Let $G$ be a graph and $chi^{prime}_{aa}(G)$ denotes the minimum number of colors required for an acyclic edge coloring of $G$ in which no two adjacent vertices are incident to edges colored with the same set of colors. We prove a general bound for $chi^{prime}_{aa}(Gsquare H)$ for any two graphs $G$ and $H$. We also determine exact value of this parameter for the Cartesian product of two paths, Cartesian product of a path and a cycle, Cartesian product of two trees, hypercubes. We show that $chi^{prime}_{aa}(C_msquare C_n)$ is at most $6$ fo every $mgeq 3$ and $ngeq 3$. Moreover in some cases we find the exact value of $chi^{prime}_{aa}(C_msquare C_n)$. | en_US | 
| dc.format.extent | 495 |  | 
| dc.format.mimetype | application/pdf |  | 
| dc.language | English |  | 
| dc.language.iso | en_US |  | 
| dc.publisher | University of Isfahan | en_US | 
| dc.relation.ispartof | Transactions on Combinatorics | en_US | 
| dc.relation.isversionof | https://dx.doi.org/10.22108/toc.2017.20988 |  | 
| dc.subject | Acyclic edge coloring | en_US | 
| dc.subject | adjacent vertex distinguishing acyclic edge coloring | en_US | 
| dc.subject | adjacent vertex distinguishing acyclic edge chromatic number | en_US | 
| dc.subject | 05C15 Coloring of graphs and hypergraphs | en_US | 
| dc.title | Adjacent vertex distinguishing acyclic edge coloring of the Cartesian product of graphs | en_US | 
| dc.type | Text | en_US | 
| dc.type | Research Paper | en_US | 
| dc.contributor.department | University of Zanjan | en_US | 
| dc.contributor.department | University of Zanjan | en_US | 
| dc.citation.volume | 6 |  | 
| dc.citation.issue | 2 |  | 
| dc.citation.spage | 19 |  | 
| dc.citation.epage | 30 |  |