• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Desert
    • Volume 17, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Desert
    • Volume 17, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of LISS-III Sensor Data of IRS-P6 Satellite for Detection Saline Soils (Case Study: Najmabad Region)

    (ندگان)پدیدآور
    Shirazi, M.Zehtabian, Gh.R.Matinfar, H.R.Alavipanah, S.K.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    688.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Soil Salinity has been a large problem in arid and semi arid regions. Preparation of such maps is useful for Natural resource managers. Old methods of preparing such maps require a lot of time and cost. Multi-spectral remotely sensed dates due to the broad vision and repeating of these imageries is suitable for provide saline soil maps. This investigation is conducted to provide saline soil maps with sensor LISS-III of IRS-P6 satellite data, in Najmabad of Savojbolagh. Satellite images belonging to 25 June 2006. For enhancement of images, salt Indices, Digital Elevation Model (DEM), False Color Composite imageries (FCC) and Principal Component Analysis (PCA), were used. Supervised classification method includes Box classifier, Minimum Distance, Minimum Mahalanobis Distance and Maximum Likelihood classifier, DEM, PCA1, PCA4 and Saline Indices (SI) were used. After classification, the class map salinity S0, S1, S2, S3 S4, were prepared. The results shows highest overall accuracy and kappa coefficient for the maximum Likelihood classifier estimate, respectively 99% and 97% and the lowest overall accuracy and kappa coefficient for PCA1 estimate, respectively 1% and 0% were obtained. Using Digital Elevation Model (DEM) also due to the difference in height position to the separation of saline lands is usefully. Most spectral interference relatedto non-saline soils and low saline soil. From among indices INT2 and PVI greatest ability to segregate is salty soils(especially classes S0 and S1).
    کلید واژگان
    LISS-III Sensor
    Saline soil maps
    Classification
    Salt indices
    DEM
    PCA

    شماره نشریه
    3
    تاریخ نشر
    2012-12-01
    1391-09-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    M.Sc Graduate, University of Tehran, Karaj, Iran
    Professor, University of Tehran, Karaj, Iran
    Assistant Professor, University of Lorestan, Khoram abad, Iran
    Professor, University of Tehran, Tehran, Iran

    شاپا
    2008-0875
    475-2345X
    URI
    https://dx.doi.org/10.22059/jdesert.2013.35260
    https://jdesert.ut.ac.ir/article_35260.html
    https://iranjournals.nlai.ir/handle/123456789/393331

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب