نمایش مختصر رکورد

dc.contributor.authorShirazi, M.en_US
dc.contributor.authorZehtabian, Gh.R.en_US
dc.contributor.authorMatinfar, H.R.en_US
dc.contributor.authorAlavipanah, S.K.en_US
dc.date.accessioned1399-07-09T11:01:03Zfa_IR
dc.date.accessioned2020-09-30T11:01:03Z
dc.date.available1399-07-09T11:01:03Zfa_IR
dc.date.available2020-09-30T11:01:03Z
dc.date.issued2012-12-01en_US
dc.date.issued1391-09-11fa_IR
dc.date.submitted2010-02-06en_US
dc.date.submitted1388-11-17fa_IR
dc.identifier.citationShirazi, M., Zehtabian, Gh.R., Matinfar, H.R., Alavipanah, S.K.. (2012). Evaluation of LISS-III Sensor Data of IRS-P6 Satellite for Detection Saline Soils (Case Study: Najmabad Region). Desert, 17(3), 277-289. doi: 10.22059/jdesert.2013.35260en_US
dc.identifier.issn2008-0875
dc.identifier.issn475-2345X
dc.identifier.urihttps://dx.doi.org/10.22059/jdesert.2013.35260
dc.identifier.urihttps://jdesert.ut.ac.ir/article_35260.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/393331
dc.description.abstractSoil Salinity has been a large problem in arid and semi arid regions. Preparation of such maps is useful for Natural resource managers. Old methods of preparing such maps require a lot of time and cost. Multi-spectral remotely sensed dates due to the broad vision and repeating of these imageries is suitable for provide saline soil maps. This investigation is conducted to provide saline soil maps with sensor LISS-III of IRS-P6 satellite data, in Najmabad of Savojbolagh. Satellite images belonging to 25 June 2006. For enhancement of images, salt Indices, Digital Elevation Model (DEM), False Color Composite imageries (FCC) and Principal Component Analysis (PCA), were used. Supervised classification method includes Box classifier, Minimum Distance, Minimum Mahalanobis Distance and Maximum Likelihood classifier, DEM, PCA1, PCA4 and Saline Indices (SI) were used. After classification, the class map salinity S0, S1, S2, S3 S4, were prepared. The results shows highest overall accuracy and kappa coefficient for the maximum Likelihood classifier estimate, respectively 99% and 97% and the lowest overall accuracy and kappa coefficient for PCA1 estimate, respectively 1% and 0% were obtained. Using Digital Elevation Model (DEM) also due to the difference in height position to the separation of saline lands is usefully. Most spectral interference related<br />to non-saline soils and low saline soil. From among indices INT2 and PVI greatest ability to segregate is salty soils(especially classes S0 and S1).en_US
dc.format.extent688
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofDeserten_US
dc.relation.isversionofhttps://dx.doi.org/10.22059/jdesert.2013.35260
dc.subjectLISS-III Sensoren_US
dc.subjectSaline soil mapsen_US
dc.subjectClassificationen_US
dc.subjectSalt indicesen_US
dc.subjectDEMen_US
dc.subjectPCAen_US
dc.titleEvaluation of LISS-III Sensor Data of IRS-P6 Satellite for Detection Saline Soils (Case Study: Najmabad Region)en_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentM.Sc Graduate, University of Tehran, Karaj, Iranen_US
dc.contributor.departmentProfessor, University of Tehran, Karaj, Iranen_US
dc.contributor.departmentAssistant Professor, University of Lorestan, Khoram abad, Iranen_US
dc.contributor.departmentProfessor, University of Tehran, Tehran, Iranen_US
dc.citation.volume17
dc.citation.issue3
dc.citation.spage277
dc.citation.epage289


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد