• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 19, Issue 9
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Asian Pacific Journal of Cancer Prevention
    • Volume 19, Issue 9
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Aiding the Digital Mammogram for Detecting the Breast Cancer Using Shearlet Transform and Neural Network

    (ندگان)پدیدآور
    P, ShenbagavalliR, Thangarajan
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    593.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Articles
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Objective: Breast Cancer is the most invasive disease and fatal disease next to lung cancer in human. Early detectionof breast cancer is accomplished by X-ray mammography. Mammography is the most effective and efficient techniqueused for detection of breast cancer in women and also to improve the breast cancer prognosis. The numbers of imagesneed to be examined by the radiologists, the resulting may be misdiagnosis due to human errors by visual Fatigue.In order to avoid human errors, Computer Aided Diagnosis is implemented. In Computer Aided Diagnosis system,number of processing and analysis of an image is done by the suitable algorithm. Methods: This paper proposed atechnique to aid radiologist to diagnosis breast cancer using Shearlet transform image enhancement method. Similar towavelet filter, Shearlet coefficients are more directional sensitive than wavelet filters which helps detecting the cancercells particularly for small contours. After enhancement of an image, segmentation algorithm is applied to identify thesuspicious region. Result: Many features are extracted and utilized to classify the mammographic images into harmfulor harmless tissues using neural network classifier. Conclusions: Multi-scale Shearlet transform because more details ondata phase, directionality and shift invariance than wavelet based transforms. The proposed Shearlet transform gives multi resolution result and generate malign and benign classification more accurate up to 93.45% utilizing DDSM database.
    کلید واژگان
    Feature Extraction
    Classification
    Mammogram
    Multi-scale
    Benign and Malignancy
    Other sciences

    شماره نشریه
    9
    تاریخ نشر
    2018-09-01
    1397-06-10
    ناشر
    West Asia Organization for Cancer Prevention (WAOCP)
    سازمان پدید آورنده
    Department of Computer Science and Engineering, M.P.Nachimuthu M.Jaganathan Engineering College, Chennimalai, Erode-638 112, Tamilnadu, India.
    Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India.

    شاپا
    1513-7368
    2476-762X
    URI
    https://dx.doi.org/10.22034/APJCP.2018.19.9.2665
    http://journal.waocp.org/article_67412.html
    https://iranjournals.nlai.ir/handle/123456789/34974

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب