• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 49, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 49, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High performance of the support vector machine in classifying hyperspectral data using a limited dataset

    (ندگان)پدیدآور
    Salimi, AmirZiaii, MansourHosseinjani Zadeh, MahdiehAmiri, AliKarimpouli, Sadegh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.549 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    To prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. A practical way to handle the Hughes problem is preparing a lot of training samples until the size of the training set is adequate and comparable with the number of the spectral bands. In order to gather adequate ground truth instances as training samples, a time-consuming and costly ground survey operation is needed. In this situation that preparing enough field samples is not an easy task, using an appropriate classifier which can properly work with a limited training dataset is highly desirable. Among the supervised classification methods, the Support Vector Machine is known as a promising classifier that can produce acceptable results even with limited training data. Here, this capability is evaluated when the SVM is used to classify the alteration zones of Darrehzar district. For this purpose, only 12 sampled instances from the study area are utilized to classify Hyperion hyperspectral data with 165 useable spectral bands. Results demonstrate that if parameters of the SVM, namely C and σ, are accurately adjusted, the SVM can be successfully used to identify alteration zones when field data samples are not available enough.
    کلید واژگان
    Classification
    cross-validation
    hughes phenomenon
    Hydrothermal alteration
    Hyperspectral
    SVM

    شماره نشریه
    2
    تاریخ نشر
    2015-12-01
    1394-09-10
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
    Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
    Department of Ecology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran.
    Faculty of Computer Engineering, Zanjan University, Zanjan, Iran
    Mining Engineering Group, Faculty of Engineering, Zanjan University, Zanjan, Iran

    شاپا
    2345-6930
    2345-6949
    URI
    https://dx.doi.org/10.22059/ijmge.2015.56111
    https://ijmge.ut.ac.ir/article_56111.html
    https://iranjournals.nlai.ir/handle/123456789/325212

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب