• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 49, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Mining and Geo-Engineering
    • Volume 49, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

    (ندگان)پدیدآور
    Moradi, MoslemAsghari, OmidNorouzi, GholamhosseinRiahi, MohammadSokooti, Reza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.632 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Here in, an application of a new seismic inversion algorithm in one of Iran's oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior information in Bayesian statistics. Data integration leads to a probability density function (named as a posteriori probability) that can yield a model of subsurface. The Markov Chain Monte Carlo (MCMC) method is used to sample the posterior probability distribution, and the subsurface model characteristics can be extracted by analyzing a set of the samples. In this study, the theory of stochastic seismic inversion in a Bayesian framework was described and applied to infer P-impedance and porosity models. The comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more detailed information of subsurface character. Since multiple realizations are extracted by this method, an estimation of pore volume and uncertainty in the estimation were analyzed.
    کلید واژگان
    Bayesian theory
    Geostatistics
    stochastic seismic inversion
    uncertainty

    شماره نشریه
    1
    تاریخ نشر
    2015-06-01
    1394-03-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Simulation and Data Processing Laboratory, Mining Engineering Department, University of Tehran, Iran
    Simulation and Data Processing Laboratory, Mining Engineering Department, University of Tehran, Iran
    Simulation and Data Processing Laboratory, Mining Engineering Department, University of Tehran, Iran
    Institute of Geophysics, University of Tehran, Iran
    NIOC Exploration Directorate, Iran

    شاپا
    2345-6930
    2345-6949
    URI
    https://dx.doi.org/10.22059/ijmge.2015.54636
    https://ijmge.ut.ac.ir/article_54636.html
    https://iranjournals.nlai.ir/handle/123456789/325070

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب