نمایش مختصر رکورد

dc.contributor.authorMoradi, Moslemen_US
dc.contributor.authorAsghari, Omiden_US
dc.contributor.authorNorouzi, Gholamhosseinen_US
dc.contributor.authorRiahi, Mohammaden_US
dc.contributor.authorSokooti, Rezaen_US
dc.date.accessioned1399-07-09T07:35:53Zfa_IR
dc.date.accessioned2020-09-30T07:35:53Z
dc.date.available1399-07-09T07:35:53Zfa_IR
dc.date.available2020-09-30T07:35:53Z
dc.date.issued2015-06-01en_US
dc.date.issued1394-03-11fa_IR
dc.date.submitted2015-03-07en_US
dc.date.submitted1393-12-16fa_IR
dc.identifier.citationMoradi, Moslem, Asghari, Omid, Norouzi, Gholamhossein, Riahi, Mohammad, Sokooti, Reza. (2015). Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis. International Journal of Mining and Geo-Engineering, 49(1), 131-142. doi: 10.22059/ijmge.2015.54636en_US
dc.identifier.issn2345-6930
dc.identifier.issn2345-6949
dc.identifier.urihttps://dx.doi.org/10.22059/ijmge.2015.54636
dc.identifier.urihttps://ijmge.ut.ac.ir/article_54636.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/325070
dc.description.abstractHere in, an application of a new seismic inversion algorithm in one of Iran's oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior information in Bayesian statistics. Data integration leads to a probability density function (named as a posteriori probability) that can yield a model of subsurface. The Markov Chain Monte Carlo (MCMC) method is used to sample the posterior probability distribution, and the subsurface model characteristics can be extracted by analyzing a set of the samples. In this study, the theory of stochastic seismic inversion in a Bayesian framework was described and applied to infer P-impedance and porosity models. The comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more detailed information of subsurface character. Since multiple realizations are extracted by this method, an estimation of pore volume and uncertainty in the estimation were analyzed.en_US
dc.format.extent1671
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofInternational Journal of Mining and Geo-Engineeringen_US
dc.relation.isversionofhttps://dx.doi.org/10.22059/ijmge.2015.54636
dc.subjectBayesian theoryen_US
dc.subjectGeostatisticsen_US
dc.subjectstochastic seismic inversionen_US
dc.subjectuncertaintyen_US
dc.titleJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysisen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentSimulation and Data Processing Laboratory, Mining Engineering Department, University of Tehran, Iranen_US
dc.contributor.departmentSimulation and Data Processing Laboratory, Mining Engineering Department, University of Tehran, Iranen_US
dc.contributor.departmentSimulation and Data Processing Laboratory, Mining Engineering Department, University of Tehran, Iranen_US
dc.contributor.departmentInstitute of Geophysics, University of Tehran, Iranen_US
dc.contributor.departmentNIOC Exploration Directorate, Iranen_US
dc.citation.volume49
dc.citation.issue1
dc.citation.spage131
dc.citation.epage142


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد