• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Oil and Gas Science and Technology
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Oil and Gas Science and Technology
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparing Two Methods of Neural Networks to Evaluate Dead Oil Viscosity

    (ندگان)پدیدآور
    Dabiri-Atashbeyk, MeysamKoolivand-salooki, MehdiEsfandyari, MortezaKoulivand, Mohsen
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.012 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Reservoir characterization and asset management require comprehensive information about formation fluids. In fact, it is not possible to find accurate solutions to many petroleum engineering problems without having accurate pressure-volume-temperature (PVT) data. Traditionally, fluid information has been obtained by capturing samples and then by measuring the PVT properties in a laboratory. In recent years, neural network has been applied to a large number of petroleum engineering problems. In this paper, a multi-layer perception neural network and radial basis function network (both optimized by a genetic algorithm) were used to evaluate the dead oil viscosity of crude oil, and it was found out that the estimated dead oil viscosity by the multi-layer perception neural network was more accurate than the one obtained by radial basis function network.
    کلید واژگان
    Dead Oil Viscosity
    Radial Basis Function (RBF)
    Multi-layer Perceptron (MLP)
    Genetic algorithm
    Neural Network
    Petroleum Engineering

    شماره نشریه
    1
    تاریخ نشر
    2018-01-01
    1396-10-11
    ناشر
    Petroleum University of Technology
    سازمان پدید آورنده
    M.S., National Iranian South Oil Field Company, Ahwaz, Iran
    Senior Process Researcher, Gas Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
    Assistant Professor, Department of Chemical Engineering, University of Bojnord, Iran
    M.S. Student, Department of Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iran

    شاپا
    2345-2412
    2345-2420
    URI
    https://dx.doi.org/10.22050/ijogst.2017.70576.1373
    http://ijogst.put.ac.ir/article_57710.html
    https://iranjournals.nlai.ir/handle/123456789/320114

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب