نمایش مختصر رکورد

dc.contributor.authorDabiri-Atashbeyk, Meysamen_US
dc.contributor.authorKoolivand-salooki, Mehdien_US
dc.contributor.authorEsfandyari, Mortezaen_US
dc.contributor.authorKoulivand, Mohsenen_US
dc.date.accessioned1399-07-09T07:20:03Zfa_IR
dc.date.accessioned2020-09-30T07:20:03Z
dc.date.available1399-07-09T07:20:03Zfa_IR
dc.date.available2020-09-30T07:20:03Z
dc.date.issued2018-01-01en_US
dc.date.issued1396-10-11fa_IR
dc.date.submitted2016-12-18en_US
dc.date.submitted1395-09-28fa_IR
dc.identifier.citationDabiri-Atashbeyk, Meysam, Koolivand-salooki, Mehdi, Esfandyari, Morteza, Koulivand, Mohsen. (2018). Comparing Two Methods of Neural Networks to Evaluate Dead Oil Viscosity. Iranian Journal of Oil and Gas Science and Technology, 7(1), 60-69. doi: 10.22050/ijogst.2017.70576.1373en_US
dc.identifier.issn2345-2412
dc.identifier.issn2345-2420
dc.identifier.urihttps://dx.doi.org/10.22050/ijogst.2017.70576.1373
dc.identifier.urihttp://ijogst.put.ac.ir/article_57710.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/320114
dc.description.abstractReservoir characterization and asset management require comprehensive information about formation fluids. In fact, it is not possible to find accurate solutions to many petroleum engineering problems without having accurate pressure-volume-temperature (PVT) data. Traditionally, fluid information has been obtained by capturing samples and then by measuring the PVT properties in a laboratory. In recent years, neural network has been applied to a large number of petroleum engineering problems. In this paper, a multi-layer perception neural network and radial basis function network (both optimized by a genetic algorithm) were used to evaluate the dead oil viscosity of crude oil, and it was found out that the estimated dead oil viscosity by the multi-layer perception neural network was more accurate than the one obtained by radial basis function network.en_US
dc.format.extent1037
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherPetroleum University of Technologyen_US
dc.relation.ispartofIranian Journal of Oil and Gas Science and Technologyen_US
dc.relation.isversionofhttps://dx.doi.org/10.22050/ijogst.2017.70576.1373
dc.subjectDead Oil Viscosityen_US
dc.subjectRadial Basis Function (RBF)en_US
dc.subjectMulti-layer Perceptron (MLP)en_US
dc.subjectGenetic algorithmen_US
dc.subjectNeural Networken_US
dc.subjectPetroleum Engineeringen_US
dc.titleComparing Two Methods of Neural Networks to Evaluate Dead Oil Viscosityen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentM.S., National Iranian South Oil Field Company, Ahwaz, Iranen_US
dc.contributor.departmentSenior Process Researcher, Gas Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iranen_US
dc.contributor.departmentAssistant Professor, Department of Chemical Engineering, University of Bojnord, Iranen_US
dc.contributor.departmentM.S. Student, Department of Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iranen_US
dc.citation.volume7
dc.citation.issue1
dc.citation.spage60
dc.citation.epage69


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد