• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Pharmaceutical Research
    • Volume 11, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Pharmaceutical Research
    • Volume 11, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists

    (ندگان)پدیدآور
    Dastmalchi, SiavoushHamzeh-Mivehroud, MaryamAsadpour-Zeynali, Karim
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1023.کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression (MLR), artificial neural network (ANN), and HASL as a 3D QSAR method, in predicting the receptor binding affinities of arylbenzofuran histamine H3 receptor antagonists. Genetic algorithm coupled partial least square as well as stepwise multiple regression methods were used to select a number of calculated molecular descriptors to be used in MLR and ANN-based QSAR studies. Using the leave-group-out cross-validation technique, the performances of the MLR and ANN methods were evaluated. The calculated values for the mean absolute percentage error (MAPE), ranging from 2.9 to 3.6, and standard deviation of error of prediction (SDEP), ranging from 0.31 to 0.36, for both MLR and ANN methods were statistically comparable, indicating that both methods perform equally well in predicting the binding affinities of the studied compounds toward the H3 receptors. On the other hand, the results from 3D-QSAR studies using HASL method were not as good as those obtained by 2D methods. It can be concluded that simple traditional approaches such as MLR method can be as reliable as those of more advanced and sophisticated methods like ANN and 3D-QSAR analyses.
    کلید واژگان
    Histamine H3 receptor
    QSAR
    HASL
    Multiple linear regression
    Neural network

    شماره نشریه
    1
    تاریخ نشر
    2012-03-01
    1390-12-11
    ناشر
    School of Pharmacy, Shahid Beheshti University of Medical Sciences
    سازمان پدید آورنده
    Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
    Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
    Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.

    شاپا
    1735-0328
    1726-6890
    URI
    https://dx.doi.org/10.22037/ijpr.2011.1031
    http://ijpr.sbmu.ac.ir/article_1031.html
    https://iranjournals.nlai.ir/handle/123456789/311788

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب