• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Robotics, Theory and Applications
    • Volume 4, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Robotics, Theory and Applications
    • Volume 4, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    3D Scene and Object Classification Based on Information Complexity of Depth Data

    (ندگان)پدیدآور
    D. Taghirad, HamidNorouzzadeh, Alireza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    656.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new definition for the Kolmogorov complexity is presented based on the Earth Moverâ s Distance (EMD). Finally the classification of 3D scenes and objects is accomplished by means of a normalized complexity distance, where its applicability in practice is proved by some experiments on publicly available datasets. Also, the experimental results are compared to some state-of-the-art 3D object classification methods. Furthermore, it has been shown that the proposed method outperforms FAB-Map 2.0 in detecting loop closures, in the sense of the precision and recall.
    کلید واژگان
    SLAM
    Loop Closure Detection
    Information Theory
    Kolmogorov Complexity

    شماره نشریه
    2
    تاریخ نشر
    2015-09-01
    1394-06-10
    ناشر
    K.N. Toosi University of Technology
    سازمان پدید آورنده
    Industrial Control Center of Excellence (ICCE), Advanced Robotics and Automated Systems (ARAS), Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran, P. O. Box 16315-1355
    Industrial Control Center of Excellence (ICCE), Advanced Robotics and Automated Systems (ARAS), Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran, P. O. Box 16315-1355

    شاپا
    2008-7144
    URI
    http://ijr.kntu.ac.ir/article_12523.html
    https://iranjournals.nlai.ir/handle/123456789/310832

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب