• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 5, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 5, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search

    (ندگان)پدیدآور
    Dowlatshahi, M. B.Derhami, V.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.203 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer's revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production management, games theory, and resources allocation in multi-agent systems. This has motivated the quest for efficient approximate algorithms both in terms of solution quality and computational time. This paper proposes a hybrid Ant Colony Optimization with a novel Multi-Neighborhood Local Search (ACO-MNLS) algorithm for solving Winner Determination Problem (WDP) in combinatorial auctions. Our proposed MNLS algorithm uses the fact that using various neighborhoods in local search can generate different local optima for WDP and that the global optima of WDP is a local optima for a given its neighborhood. Therefore, proposed MNLS algorithm simultaneously explores a set of three different neighborhoods to get different local optima and to escape from local optima. The comparisons between ACO-MNLS, Genetic Algorithm (GA), Memetic Algorithm (MA), Stochastic Local Search (SLS), and Tabu Search (TS) on various benchmark problems confirm the efficiency of ACO-MNLS in the terms of solution quality and computational time.
    کلید واژگان
    Winner Determination Problem
    Combinatorial Auctions
    Ant Colony Optimization
    Multi-Neighborhood Search
    Combinatorial Optimization
    H.3.15.3. Evolutionary computing and genetic algorithms

    شماره نشریه
    2
    تاریخ نشر
    2017-07-01
    1396-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Computer Engineering Department, Yazd University, Yazd, Iran.
    Computer Engineering Department, Yazd University, Yazd, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2017.880
    http://jad.shahroodut.ac.ir/article_880.html
    https://iranjournals.nlai.ir/handle/123456789/294846

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب