نمایش مختصر رکورد

dc.contributor.authorDowlatshahi, M. B.en_US
dc.contributor.authorDerhami, V.en_US
dc.date.accessioned1399-07-09T06:04:09Zfa_IR
dc.date.accessioned2020-09-30T06:04:09Z
dc.date.available1399-07-09T06:04:09Zfa_IR
dc.date.available2020-09-30T06:04:09Z
dc.date.issued2017-07-01en_US
dc.date.issued1396-04-10fa_IR
dc.date.submitted2016-01-02en_US
dc.date.submitted1394-10-12fa_IR
dc.identifier.citationDowlatshahi, M. B., Derhami, V.. (2017). Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search. Journal of AI and Data Mining, 5(2), 169-181. doi: 10.22044/jadm.2017.880en_US
dc.identifier.issn2322-5211
dc.identifier.issn2322-4444
dc.identifier.urihttps://dx.doi.org/10.22044/jadm.2017.880
dc.identifier.urihttp://jad.shahroodut.ac.ir/article_880.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/294846
dc.description.abstractA combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer's revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production management, games theory, and resources allocation in multi-agent systems. This has motivated the quest for efficient approximate algorithms both in terms of solution quality and computational time. This paper proposes a hybrid Ant Colony Optimization with a novel Multi-Neighborhood Local Search (ACO-MNLS) algorithm for solving Winner Determination Problem (WDP) in combinatorial auctions. Our proposed MNLS algorithm uses the fact that using various neighborhoods in local search can generate different local optima for WDP and that the global optima of WDP is a local optima for a given its neighborhood. Therefore, proposed MNLS algorithm simultaneously explores a set of three different neighborhoods to get different local optima and to escape from local optima. The comparisons between ACO-MNLS, Genetic Algorithm (GA), Memetic Algorithm (MA), Stochastic Local Search (SLS), and Tabu Search (TS) on various benchmark problems confirm the efficiency of ACO-MNLS in the terms of solution quality and computational time.en_US
dc.format.extent1231
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of AI and Data Miningen_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jadm.2017.880
dc.subjectWinner Determination Problemen_US
dc.subjectCombinatorial Auctionsen_US
dc.subjectAnt Colony Optimizationen_US
dc.subjectMulti-Neighborhood Searchen_US
dc.subjectCombinatorial Optimizationen_US
dc.subjectH.3.15.3. Evolutionary computing and genetic algorithmsen_US
dc.titleWinner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Searchen_US
dc.typeTexten_US
dc.typeResearch/Original/Regular Articleen_US
dc.contributor.departmentComputer Engineering Department, Yazd University, Yazd, Iran.en_US
dc.contributor.departmentComputer Engineering Department, Yazd University, Yazd, Iran.en_US
dc.citation.volume5
dc.citation.issue2
dc.citation.spage169
dc.citation.epage181
nlai.contributor.orcid0000-0003-4691-0643


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد