• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 4, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 4, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of rock strength parameters for an Iranian oil field using neuro-fuzzy method

    (ندگان)پدیدآور
    Heidarian, M.Jalalifar, H.Rafati, F.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.105 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Uniaxial compressive strength (UCS) and internal friction coefficient (µ) are the most important strength parameters of rock. They could be determined either by laboratory tests or from empirical correlations. The laboratory analysis sometimes is not possible for many reasons. On the other hand, Due to changes in rock compositions and properties, none of the correlations could be applied as an exact universal correlation. In such conditions, the artificial intelligence could be an appropriate candidate method for estimation of the strength parameters. In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) which is one of the artificial intelligence techniques was used as dominant tool to predict the strength parameters in one of the Iranian southwest oil fields. A total of 655 data sets (including depth, compressional wave velocity and density data) were used. 436 and 219 data sets were randomly selected among the data for constructing and verification of the intelligent model, respectively. To evaluate the performance of the model, root mean square error (RMSE) and correlation coefficient (R2) between the reported values from the drilling site and estimated values was computed. A comparison between the RMSE of the proposed model and recently intelligent models shows that the proposed model is more accurate than others. Acceptable accuracy and using conventional well logging data are the highlight advantages of the proposed intelligent model.
    کلید واژگان
    Uniaxial compressive strength
    internal friction coefficient
    Well Logging
    ANFIS
    H.3. Artificial Intelligence

    شماره نشریه
    2
    تاریخ نشر
    2016-07-01
    1395-04-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Petroleum Engineering, Shahid Bahonar University, Kerman, Iran.
    Department of Petroleum Engineering, Shahid Bahonar University, Kerman, Iran.
    Department of Petroleum Engineering, Shahid Bahonar University, Kerman, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.5829/idosi.JAIDM.2016.04.02.11
    http://jad.shahroodut.ac.ir/article_587.html
    https://iranjournals.nlai.ir/handle/123456789/294842

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب