نمایش مختصر رکورد

dc.contributor.authorHeidarian, M.en_US
dc.contributor.authorJalalifar, H.en_US
dc.contributor.authorRafati, F.en_US
dc.date.accessioned1399-07-09T06:04:08Zfa_IR
dc.date.accessioned2020-09-30T06:04:08Z
dc.date.available1399-07-09T06:04:08Zfa_IR
dc.date.available2020-09-30T06:04:08Z
dc.date.issued2016-07-01en_US
dc.date.issued1395-04-11fa_IR
dc.date.submitted2015-05-06en_US
dc.date.submitted1394-02-16fa_IR
dc.identifier.citationHeidarian, M., Jalalifar, H., Rafati, F.. (2016). Prediction of rock strength parameters for an Iranian oil field using neuro-fuzzy method. Journal of AI and Data Mining, 4(2), 229-234. doi: 10.5829/idosi.JAIDM.2016.04.02.11en_US
dc.identifier.issn2322-5211
dc.identifier.issn2322-4444
dc.identifier.urihttps://dx.doi.org/10.5829/idosi.JAIDM.2016.04.02.11
dc.identifier.urihttp://jad.shahroodut.ac.ir/article_587.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/294842
dc.description.abstractUniaxial compressive strength (UCS) and internal friction coefficient (µ) are the most important strength parameters of rock. They could be determined either by laboratory tests or from empirical correlations. The laboratory analysis sometimes is not possible for many reasons. On the other hand, Due to changes in rock compositions and properties, none of the correlations could be applied as an exact universal correlation. In such conditions, the artificial intelligence could be an appropriate candidate method for estimation of the strength parameters. In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) which is one of the artificial intelligence techniques was used as dominant tool to predict the strength parameters in one of the Iranian southwest oil fields. A total of 655 data sets (including depth, compressional wave velocity and density data) were used. 436 and 219 data sets were randomly selected among the data for constructing and verification of the intelligent model, respectively. <br />To evaluate the performance of the model, root mean square error (RMSE) and correlation coefficient (R2) between the reported values from the drilling site and estimated values was computed. A comparison between the RMSE of the proposed model and recently intelligent models shows that the proposed model is more accurate than others. Acceptable accuracy and using conventional well logging data are the highlight advantages of the proposed intelligent model.en_US
dc.format.extent1132
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of AI and Data Miningen_US
dc.relation.isversionofhttps://dx.doi.org/10.5829/idosi.JAIDM.2016.04.02.11
dc.subjectUniaxial compressive strengthen_US
dc.subjectinternal friction coefficienten_US
dc.subjectWell Loggingen_US
dc.subjectANFISen_US
dc.subjectH.3. Artificial Intelligenceen_US
dc.titlePrediction of rock strength parameters for an Iranian oil field using neuro-fuzzy methoden_US
dc.typeTexten_US
dc.typeResearch/Original/Regular Articleen_US
dc.contributor.departmentDepartment of Petroleum Engineering, Shahid Bahonar University, Kerman, Iran.en_US
dc.contributor.departmentDepartment of Petroleum Engineering, Shahid Bahonar University, Kerman, Iran.en_US
dc.contributor.departmentDepartment of Petroleum Engineering, Shahid Bahonar University, Kerman, Iran.en_US
dc.citation.volume4
dc.citation.issue2
dc.citation.spage229
dc.citation.epage234


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد