• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data sanitization in association rule mining based on impact factor

    (ندگان)پدیدآور
    Telikani, A.Shahbahrami, A.Tavoli, R.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    883.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research/Original/Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved against association rule mining method. This process strongly rely on the minimizing the impact of data sanitization on the data utility by minimizing the number of lost patterns in the form of non-sensitive patterns which are not mined from sanitized database. This study proposes a data sanitization algorithm to hide sensitive patterns in the form of frequent itemsets from the database while controls the impact of sanitization on the data utility using estimation of impact factor of each modification on non-sensitive itemsets. The proposed algorithm has been compared with Sliding Window size Algorithm (SWA) and Max-Min1 in term of execution time, data utility and data accuracy. The data accuracy is defined as the ratio of deleted items to the total support values of sensitive itemsets in the source dataset. Experimental results demonstrate that proposed algorithm outperforms SWA and Max-Min1 in terms of maximizing the data utility and data accuracy and it provides better execution time over SWA and Max-Min1 in high scalability for sensitive itemsets and transactions.
    کلید واژگان
    Data Sanitization
    Association rule hiding
    Frequent Itemsets
    Association Rule Mining
    Privacy preserving data mining
    F.1. General

    شماره نشریه
    2
    تاریخ نشر
    2015-07-01
    1394-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Electronic & Computer Engineering, Institute for Higher Education Pouyandegan Danesh, Chalous, Iran.
    Department of Computer Engineering, University of Guilan, Rasht, Iran.
    Department of Mathematics, Chalous Branch, Islamic Azad University, Chalous, Iran.

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.5829/idosi.JAIDM.2015.03.02.02
    http://jad.shahroodut.ac.ir/article_499.html
    https://iranjournals.nlai.ir/handle/123456789/294821

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب