نمایش مختصر رکورد

dc.contributor.authorTelikani, A.en_US
dc.contributor.authorShahbahrami, A.en_US
dc.contributor.authorTavoli, R.en_US
dc.date.accessioned1399-07-09T06:04:05Zfa_IR
dc.date.accessioned2020-09-30T06:04:05Z
dc.date.available1399-07-09T06:04:05Zfa_IR
dc.date.available2020-09-30T06:04:05Z
dc.date.issued2015-07-01en_US
dc.date.issued1394-04-10fa_IR
dc.date.submitted2015-01-31en_US
dc.date.submitted1393-11-11fa_IR
dc.identifier.citationTelikani, A., Shahbahrami, A., Tavoli, R.. (2015). Data sanitization in association rule mining based on impact factor. Journal of AI and Data Mining, 3(2), 131-140. doi: 10.5829/idosi.JAIDM.2015.03.02.02en_US
dc.identifier.issn2322-5211
dc.identifier.issn2322-4444
dc.identifier.urihttps://dx.doi.org/10.5829/idosi.JAIDM.2015.03.02.02
dc.identifier.urihttp://jad.shahroodut.ac.ir/article_499.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/294821
dc.description.abstractData sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved against association rule mining method. This process strongly rely on the minimizing the impact of data sanitization on the data utility by minimizing the number of lost patterns in the form of non-sensitive patterns which are not mined from sanitized database. This study proposes a data sanitization algorithm to hide sensitive patterns in the form of frequent itemsets from the database while controls the impact of sanitization on the data utility using estimation of impact factor of each modification on non-sensitive itemsets. The proposed algorithm has been compared with Sliding Window size Algorithm (SWA) and Max-Min1 in term of execution time, data utility and data accuracy. The data accuracy is defined as the ratio of deleted items to the total support values of sensitive itemsets in the source dataset. Experimental results demonstrate that proposed algorithm outperforms SWA and Max-Min1 in terms of maximizing the data utility and data accuracy and it provides better execution time over SWA and Max-Min1 in high scalability for sensitive itemsets and transactions.en_US
dc.format.extent883
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of AI and Data Miningen_US
dc.relation.isversionofhttps://dx.doi.org/10.5829/idosi.JAIDM.2015.03.02.02
dc.subjectData Sanitizationen_US
dc.subjectAssociation rule hidingen_US
dc.subjectFrequent Itemsetsen_US
dc.subjectAssociation Rule Miningen_US
dc.subjectPrivacy preserving data miningen_US
dc.subjectF.1. Generalen_US
dc.titleData sanitization in association rule mining based on impact factoren_US
dc.typeTexten_US
dc.typeResearch/Original/Regular Articleen_US
dc.contributor.departmentDepartment of Electronic & Computer Engineering, Institute for Higher Education Pouyandegan Danesh, Chalous, Iran.en_US
dc.contributor.departmentDepartment of Computer Engineering, University of Guilan, Rasht, Iran.en_US
dc.contributor.departmentDepartment of Mathematics, Chalous Branch, Islamic Azad University, Chalous, Iran.en_US
dc.citation.volume3
dc.citation.issue2
dc.citation.spage131
dc.citation.epage140


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد