• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Applied Research on Industrial Engineering
    • Volume 2, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Applied Research on Industrial Engineering
    • Volume 2, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Studying the suitability of different data mining methods for delay analysis in construction projects

    (ندگان)پدیدآور
    Movahedi Sobhani, FarzadMadadi, Tahereh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    768.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The main purpose of this paper is to investigate the suitability of diverse data mining techniques for construction delay analysis. Data of this research obtained from 120 Iranian construction projects. The analysis consists of developing and evaluating various data mining models for factor selection, delay classification, and delay prediction. The results of this research indicate that with respect to accuracy and correlation indexes, genetic algorithm with K-NN learning model is the most suitable model for factor selection. By conducting the genetic algorithm, eight significant variables causing construction delay are identified as: Changes in project manager, Difficulties in financing project by owner, Number of employees, Project duration, Unforeseen events, Project Location, Number of equipment, How to get the project. This research also revealed that in the case of delay classification and prediction, respectively, bagging decision tree and bagging neural network has the least amount of error in comparison with other techniques. In addition, to compare the diversity of data mining methods, the optimized parameter vectors of the selected models were also identified.
    کلید واژگان
    Construction delay
    Data mining
    evaluation
    prediction
    Classification
    factor selection

    شماره نشریه
    1
    تاریخ نشر
    2015-03-01
    1393-12-10
    ناشر
    Ayandegan Institute of Higher Education, Iran
    سازمان پدید آورنده
    Department of Industerial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
    Department of Industerial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

    شاپا
    2538-5100
    2676-6167
    URI
    http://www.journal-aprie.com/article_42989.html
    https://iranjournals.nlai.ir/handle/123456789/26925

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب