نمایش مختصر رکورد

dc.contributor.authorMovahedi Sobhani, Farzaden_US
dc.contributor.authorMadadi, Taherehen_US
dc.date.accessioned1399-07-08T17:41:19Zfa_IR
dc.date.accessioned2020-09-29T17:41:19Z
dc.date.available1399-07-08T17:41:19Zfa_IR
dc.date.available2020-09-29T17:41:19Z
dc.date.issued2015-03-01en_US
dc.date.issued1393-12-10fa_IR
dc.date.submitted2015-01-18en_US
dc.date.submitted1393-10-28fa_IR
dc.identifier.citationMovahedi Sobhani, Farzad, Madadi, Tahereh. (2015). Studying the suitability of different data mining methods for delay analysis in construction projects. Journal of Applied Research on Industrial Engineering, 2(1), 15-33.en_US
dc.identifier.issn2538-5100
dc.identifier.issn2676-6167
dc.identifier.urihttp://www.journal-aprie.com/article_42989.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/26925
dc.description.abstractThe main purpose of this paper is to investigate the suitability of diverse data mining techniques for construction delay analysis. Data of this research obtained from 120 Iranian construction projects. The analysis consists of developing and evaluating various data mining models for factor selection, delay classification, and delay prediction. The results of this research indicate that with respect to accuracy and correlation indexes, genetic algorithm with K-NN learning model is the most suitable model for factor selection. By conducting the genetic algorithm, eight significant variables causing construction delay are identified as: Changes in project manager, Difficulties in financing project by owner, Number of employees, Project duration, Unforeseen events, Project Location, Number of equipment, How to get the project. This research also revealed that in the case of delay classification and prediction, respectively, bagging decision tree and bagging neural network has the least amount of error in comparison with other techniques. In addition, to compare the diversity of data mining methods, the optimized parameter vectors of the selected models were also identified.en_US
dc.format.extent768
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherAyandegan Institute of Higher Education, Iranen_US
dc.relation.ispartofJournal of Applied Research on Industrial Engineeringen_US
dc.subjectConstruction delayen_US
dc.subjectData miningen_US
dc.subjectevaluationen_US
dc.subjectpredictionen_US
dc.subjectClassificationen_US
dc.subjectfactor selectionen_US
dc.titleStudying the suitability of different data mining methods for delay analysis in construction projectsen_US
dc.typeTexten_US
dc.contributor.departmentDepartment of Industerial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iranen_US
dc.contributor.departmentDepartment of Industerial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iranen_US
dc.citation.volume2
dc.citation.issue1
dc.citation.spage15
dc.citation.epage33


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد