• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • نوآوری در علوم و فناوری غذایی
    • دوره 7, شماره 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • نوآوری در علوم و فناوری غذایی
    • دوره 7, شماره 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی

    (ندگان)پدیدآور
    پدیدآور نامشخص
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    269.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله پژوهشی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی قرار گرفت. نتایج خشک کردن اسمزی نشان داد که هر سه پارامتر ذکر شده بر کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد موثر هستند. با افزایش زمان فرآیند اسمزی از 30 دقیقه به 120 دقیقه، درصد کاهش وزن، درصد کاهش آب و مقدار جذب مواد جامد به ترتیب 78/21 ، 64/50 و 31/157 درصد افزایش می یابند. در این پژوهش همچنین مدل سازی فرآیند به روش الگوریتم ژنتیک - شبکه عصبی مصنوعی با 3 ورودی و 3 خروجی جهت پیشگویی کاهش وزن، کاهش آب و جذب مواد جامد انجام شد. نتایج مدل سازی به روش الگوریتم ژنتیک - شبکه عصبی مصنوعی نشان داد شبکه ای با تعداد 14 نرون در یک لایه پنهان و با استفاده از تابع فعال سازی تانژانت هیپربولیک می توان به خوبی درصد کاهش وزن (98/0R=)، درصد کاهش آب (97/0R=) و مقدار جذب مواد جامد (96/0R=) در طی فرآیند خشک کردن اسمزی زردآلو را پیشگویی نمود. نتایج آنالیز حساسیت توسط شبکه عصبی بهینه، دمای محلول اسمزی را به عنوان موثرترین عامل در کنترل کاهش وزن، کاهش آب و جذب مواد جامد از قطعات زردآلو نشان داد.
    کلید واژگان
    الگوریتم ژنتیک
    آنالیز حساسیت
    پیش بینی
    سینتیک
    شبکه عصبی مصنوعی

    شماره نشریه
    1
    تاریخ نشر
    2015-05-22
    1394-03-01
    ناشر
    دانشگاه آزاد اسلامی واحد سبزوار

    شاپا
    2423-4966
    2676-7155
    URI
    http://jfst.iaus.ac.ir/article_527669.html
    https://iranjournals.nlai.ir/handle/123456789/265613

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب