• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Environmental Research
    • Volume 6, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Environmental Research
    • Volume 6, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine Learning for Predictive Management: Short and Long term Prediction of Phytoplankton Biomass using Genetic Algorithm Based Recurrent Neural Networks

    (ندگان)پدیدآور
    Kim, D.K.Jeong, K.S.McKay, R.I.B.Chon, T.S.Joo, G.J.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    799.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In the regulated Nakdong River, algal proliferations are annually observed in some seasons, with cyanobacteria (Microcystis aeruginosa) appearing in summer and diatom blooms (Stephanodiscus hantzschii) in winter. This study aims to develop two ecological models forecasting future chlorophyll a at two time-steps (one-week and one-year forecasts), using recurrent neural networks tuned by genetic algorithm (GA-RNN). A moving average (MA) method pre-processes the data for both short- and long-term forecasting to evaluate the effect of noise downscaling on model predictability and to estimate its usefulness and trend prediction for management purposes. Twenty-five physicochemical and biological components (e.g. water temperature, DO, pH, dams discharge, river flow, rainfall, zooplankton abundance, nutrient concentration, etc. from 1994 to 2006) are used as input variables to predict chlorophyll a. GA-RNN models show a satisfactory level of performance for both predictions. Using genetic operations in the network training enables us to avoid numerous trial-and-error model constructions. MA-smoothed data improves the predictivity of models by removing residuals in the data prediction and enhancing the trend of time-series patterns. The results demonstrate efficient development of ecological models through selecting appropriate network structures. Data pre-processing with MA helps in forecasting long-term seasonality and trend of chlorophyll a, an important outcome for decision makers because it provides more reaction time to establish and control management strategies.
    کلید واژگان
    genetic algorithm
    Nakdong River
    Biomass
    Management
    Sensitivity analysis
    Time-series prediction

    شماره نشریه
    1
    تاریخ نشر
    2012-01-01
    1390-10-11
    ناشر
    University of Tehran/Springer
    سازمان پدید آورنده
    School of Computer Science and Engineering, Seoul National University, Seoul, 151-721, South Korea
    Department of Biological Science, Pusan National University, Busan, 609-735, South Korea
    School of Computer Science and Engineering, Seoul National University, Seoul, 151-721, South Korea
    Department of Biological Science, Pusan National University, Busan, 609-735, South Korea
    School of Computer Science and Engineering, Seoul National University, Seoul, 151-721, South Korea

    شاپا
    1735-6865
    2008-2304
    URI
    https://dx.doi.org/10.22059/ijer.2011.476
    https://ijer.ut.ac.ir/article_476.html
    https://iranjournals.nlai.ir/handle/123456789/24962

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب