نمایش مختصر رکورد

dc.contributor.authorKim, D.K.en_US
dc.contributor.authorJeong, K.S.en_US
dc.contributor.authorMcKay, R.I.B.en_US
dc.contributor.authorChon, T.S.en_US
dc.contributor.authorJoo, G.J.en_US
dc.date.accessioned1399-07-08T17:36:13Zfa_IR
dc.date.accessioned2020-09-29T17:36:13Z
dc.date.available1399-07-08T17:36:13Zfa_IR
dc.date.available2020-09-29T17:36:13Z
dc.date.issued2012-01-01en_US
dc.date.issued1390-10-11fa_IR
dc.date.submitted2011-12-18en_US
dc.date.submitted1390-09-27fa_IR
dc.identifier.citationKim, D.K., Jeong, K.S., McKay, R.I.B., Chon, T.S., Joo, G.J.. (2012). Machine Learning for Predictive Management: Short and Long term Prediction of Phytoplankton Biomass using Genetic Algorithm Based Recurrent Neural Networks. International Journal of Environmental Research, 6(1), 95-108. doi: 10.22059/ijer.2011.476en_US
dc.identifier.issn1735-6865
dc.identifier.issn2008-2304
dc.identifier.urihttps://dx.doi.org/10.22059/ijer.2011.476
dc.identifier.urihttps://ijer.ut.ac.ir/article_476.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/24962
dc.description.abstractIn the regulated Nakdong River, algal proliferations are annually observed in some seasons, with cyanobacteria (Microcystis aeruginosa) appearing in summer and diatom blooms (Stephanodiscus hantzschii) in winter. This study aims to develop two ecological models forecasting future chlorophyll a at two time-steps (one-week and one-year forecasts), using recurrent neural networks tuned by genetic algorithm (GA-RNN). A moving average (MA) method pre-processes the data for both short- and long-term forecasting to evaluate the effect of noise downscaling on model predictability and to estimate its usefulness and trend prediction for management purposes. Twenty-five physicochemical and biological components (e.g. water temperature, DO, pH, dams discharge, river flow, rainfall, zooplankton abundance, nutrient concentration, etc. from 1994 to 2006) are used as input variables to predict chlorophyll a. GA-RNN models show a satisfactory level of performance for both predictions. Using genetic operations in the network training enables us to avoid numerous trial-and-error model constructions. MA-smoothed data improves the predictivity of models by removing residuals in the data prediction and enhancing the trend of time-series patterns. The results demonstrate efficient development of ecological models through selecting appropriate network structures. Data pre-processing with MA helps in forecasting long-term seasonality and trend of chlorophyll a, an important outcome for decision makers because it provides more reaction time to establish and control management strategies.en_US
dc.format.extent799
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehran/Springeren_US
dc.relation.ispartofInternational Journal of Environmental Researchen_US
dc.relation.isversionofhttps://dx.doi.org/10.22059/ijer.2011.476
dc.subjectgenetic algorithmen_US
dc.subjectNakdong Riveren_US
dc.subjectBiomassen_US
dc.subjectManagementen_US
dc.subjectSensitivity analysisen_US
dc.subjectTime-series predictionen_US
dc.titleMachine Learning for Predictive Management: Short and Long term Prediction of Phytoplankton Biomass using Genetic Algorithm Based Recurrent Neural Networksen_US
dc.typeTexten_US
dc.contributor.departmentSchool of Computer Science and Engineering, Seoul National University, Seoul, 151-721, South Koreaen_US
dc.contributor.departmentDepartment of Biological Science, Pusan National University, Busan, 609-735, South Koreaen_US
dc.contributor.departmentSchool of Computer Science and Engineering, Seoul National University, Seoul, 151-721, South Koreaen_US
dc.contributor.departmentDepartment of Biological Science, Pusan National University, Busan, 609-735, South Koreaen_US
dc.contributor.departmentSchool of Computer Science and Engineering, Seoul National University, Seoul, 151-721, South Koreaen_US
dc.citation.volume6
dc.citation.issue1
dc.citation.spage95
dc.citation.epage108


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد