Computational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue
(ندگان)پدیدآور
Nazari, A.Nezami, A.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Given four complex matrices $A$, $B$, $C$ and $D$ where $Ainmathbb{C}^{ntimes n}$ and $Dinmathbb{C}^{mtimes m}$ and let the matrix $left(begin{array}{cc} A & B  C & D end{array} right)$ be a normal matrix and assume that $lambda$ is a given complex number that is not eigenvalue of matrix $A$. We present a method to calculate the distance norm (with respect to 2-norm) from $D$ to the set of matrices $X in C^{m times m}$ such that, $lambda$ be a multiple eigenvalue of matrix $left(begin{array}{cc} A & B  C & X end{array} right)$. We also find the nearest matrix $X$ to the matrix $D$.
کلید واژگان
Normal matrixmultiple eigenvalues
Singular value
distance matrices
Linear and multilinear algebra; matrix theory
شماره نشریه
01تاریخ نشر
2017-03-011395-12-11
ناشر
Central Tehran Branch, Islamic Azad Universityسازمان پدید آورنده
Department of Mathematics, Arak University, P.O. Box 38156-8-8349, Arak, IranDepartment of Mathematics, Arak University, P.O. Box 38156-8-8349, Arak, Iran
شاپا
2252-02012345-5934




