| dc.contributor.author | Nazari, A. | en_US |
| dc.contributor.author | Nezami, A. | en_US |
| dc.date.accessioned | 1399-07-09T03:40:47Z | fa_IR |
| dc.date.accessioned | 2020-09-30T03:40:47Z | |
| dc.date.available | 1399-07-09T03:40:47Z | fa_IR |
| dc.date.available | 2020-09-30T03:40:47Z | |
| dc.date.issued | 2017-03-01 | en_US |
| dc.date.issued | 1395-12-11 | fa_IR |
| dc.date.submitted | 2016-11-01 | en_US |
| dc.date.submitted | 1395-08-11 | fa_IR |
| dc.identifier.citation | Nazari, A., Nezami, A.. (2017). Computational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue. Journal of Linear and Topological Algebra ( JLTA ), 06(01), 67-72. | en_US |
| dc.identifier.issn | 2252-0201 | |
| dc.identifier.issn | 2345-5934 | |
| dc.identifier.uri | http://jlta.iauctb.ac.ir/article_530216.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/245741 | |
| dc.description.abstract | <span>Given four complex matrices $A$, $B$, $C$ and $D$ where $Ainmathbb{C}^{ntimes n}$ </span><span>and $Dinmathbb{C}^{mtimes m}$ and let the matrix $left(begin{array}{cc} </span><span>A & B </span><span>C & D </span><span>end{array} right)$ be a normal matrix and </span><span>assume that $lambda$ is a given complex number </span><span>that is not eigenvalue of matrix $A$. </span><span>We present a method to calculate the distance norm (with respect to 2-norm) from $D$ </span><span>to the set of matrices $X in C^{m times m}$ such that, $lambda$ be a multiple </span><span>eigenvalue of matrix $left(begin{array}{cc} </span><span>A & B </span><span>C & X </span><span>end{array} right)$. We </span><span>also find the nearest matrix $X$ to the matrix $D$.</span> | en_US |
| dc.format.extent | 112 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Central Tehran Branch, Islamic Azad University | en_US |
| dc.relation.ispartof | Journal of Linear and Topological Algebra ( JLTA ) | en_US |
| dc.subject | Normal matrix | en_US |
| dc.subject | multiple eigenvalues | en_US |
| dc.subject | Singular value | en_US |
| dc.subject | distance matrices | en_US |
| dc.subject | Linear and multilinear algebra; matrix theory | en_US |
| dc.title | Computational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | Department of Mathematics, Arak University,
P.O. Box 38156-8-8349, Arak, Iran | en_US |
| dc.contributor.department | Department of Mathematics, Arak University,
P.O. Box 38156-8-8349, Arak, Iran | en_US |
| dc.citation.volume | 06 | |
| dc.citation.issue | 01 | |
| dc.citation.spage | 67 | |
| dc.citation.epage | 72 | |