• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 8, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 8, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting tensile strength of rocks from physical properties based on support vector regression optimized by cultural algorithm

    (ندگان)پدیدآور
    Fattahi, H.Babanouri, N.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    723.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Case Study
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The tensile strength (TS) of rocks is an important parameter in the design of a variety of engineering structures such as the surface and underground mines, dam foundations, types of tunnels and excavations, and oil wells. In addition, the physical properties of a rock are intrinsic characteristics, which influence its mechanical behavior at a fundamental level. In this paper, a new approach combining the support vector regression (SVR) with a cultural algorithm (CA) is presented in order to predict TS of rocks from their physical properties. CA is used to determine the optimal value of the SVR controlling the parameters. A dataset including 29 data points was used in this study, in which 20 data points (70%) were considered for constructing the model and the remaining ones (9 data points) were used to evaluate the degree of accuracy and robustness. The results obtained show that the SVR optimized by the CA model can be successfully used to predict TS.
    کلید واژگان
    Tensile Strength (TS) of Rocks
    Support Vector Regression (SVR)
    Cultural Algorithm (CA)
    Physical Properties

    شماره نشریه
    3
    تاریخ نشر
    2017-07-01
    1396-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Mining Engineering, Arak University of Technology, Arak, Iran
    Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2016.824
    http://jme.shahroodut.ac.ir/article_824.html
    https://iranjournals.nlai.ir/handle/123456789/242877

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب