نمایش مختصر رکورد

dc.contributor.authorFattahi, H.en_US
dc.contributor.authorBabanouri, N.en_US
dc.date.accessioned1399-07-09T03:32:41Zfa_IR
dc.date.accessioned2020-09-30T03:32:41Z
dc.date.available1399-07-09T03:32:41Zfa_IR
dc.date.available2020-09-30T03:32:41Z
dc.date.issued2017-07-01en_US
dc.date.issued1396-04-10fa_IR
dc.date.submitted2016-11-11en_US
dc.date.submitted1395-08-21fa_IR
dc.identifier.citationFattahi, H., Babanouri, N.. (2017). Predicting tensile strength of rocks from physical properties based on support vector regression optimized by cultural algorithm. Journal of Mining and Environment, 8(3), 467-474. doi: 10.22044/jme.2016.824en_US
dc.identifier.issn2251-8592
dc.identifier.issn2251-8606
dc.identifier.urihttps://dx.doi.org/10.22044/jme.2016.824
dc.identifier.urihttp://jme.shahroodut.ac.ir/article_824.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/242877
dc.description.abstractThe tensile strength (TS) of rocks is an important parameter in the design of a variety of engineering structures such as the surface and underground mines, dam foundations, types of tunnels and excavations, and oil wells. In addition, the physical properties of a rock are intrinsic characteristics, which influence its mechanical behavior at a fundamental level. In this paper, a new approach combining the support vector regression (SVR) with a cultural algorithm (CA) is presented in order to predict TS of rocks from their physical properties. CA is used to determine the optimal value of the SVR controlling the parameters. A dataset including 29 data points was used in this study, in which 20 data points (70%) were considered for constructing the model and the remaining ones (9 data points) were used to evaluate the degree of accuracy and robustness. The results obtained show that the SVR optimized by the CA model can be successfully used to predict TS.en_US
dc.format.extent723
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of Mining and Environmenten_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jme.2016.824
dc.subjectTensile Strength (TS) of Rocksen_US
dc.subjectSupport Vector Regression (SVR)en_US
dc.subjectCultural Algorithm (CA)en_US
dc.subjectPhysical Propertiesen_US
dc.titlePredicting tensile strength of rocks from physical properties based on support vector regression optimized by cultural algorithmen_US
dc.typeTexten_US
dc.typeCase Studyen_US
dc.contributor.departmentDepartment of Mining Engineering, Arak University of Technology, Arak, Iranen_US
dc.contributor.departmentDepartment of Mining Engineering, Hamedan University of Technology, Hamedan, Iranen_US
dc.citation.volume8
dc.citation.issue3
dc.citation.spage467
dc.citation.epage474


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد