• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 11, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 11, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

    (ندگان)پدیدآور
    Bastami, R.Aghajani Bazzazi, A.Hamidian Shoormasti, H.Ahangari, K.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    6.425 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (GEP), linear multivariate regression (LMR), and non-linear multivariate regression (NLMR) models. In all models, the ANFO value, number of detonators, Emolite value, hole number, hole length, hole diameter, burden, spacing, stemming, sub-drilling, specific gravity of rock, hardness, and uniaxial compressive strength are used as the input parameters. The ANN model results in the test stage indicating a higher correlation coefficient (0.954) and a lower root mean square error (973) compared to the other models. In addition, it has a better conformity with the real blasting costs in comparison with the other models. Although the ANNs method is regarded as one of the intelligent and powerful techniques in parameter prediction, its most important fault is its inability to provide mathematical equations for engineering operations. In contrast, the GEP model exhibits a reliable output by presenting a mathematical equation for BC prediction with a correlation coefficient of 0.933 and a root mean square error of 1088. Based on the sensitivity analysis, the spacing and ANFO values have the maximum and minimum effects on the BC function, respectively. The number of detonators, Emolite value, hole number, specific gravity, hardness, and rock uniaxial compressive strength have a positive correlation with BC, while the ANFO value, hole length, hole diameter, burden, spacing, stemming, and sub-drilling have a negative correlation with BC.
    کلید واژگان
    Blasting Cost
    Limestone Mines
    Gene Expression
    Nonlinear Multivariate Regression
    Artificial Neural Network
    Mine Economic and Management

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
    Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran.
    Department of Mining Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
    Department of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2019.9027.1790
    http://jme.shahroodut.ac.ir/article_1662.html
    https://iranjournals.nlai.ir/handle/123456789/242783

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب