نمایش مختصر رکورد

dc.contributor.authorBastami, R.en_US
dc.contributor.authorAghajani Bazzazi, A.en_US
dc.contributor.authorHamidian Shoormasti, H.en_US
dc.contributor.authorAhangari, K.en_US
dc.date.accessioned1399-07-09T03:32:24Zfa_IR
dc.date.accessioned2020-09-30T03:32:24Z
dc.date.available1399-07-09T03:32:24Zfa_IR
dc.date.available2020-09-30T03:32:24Z
dc.date.issued2020-01-01en_US
dc.date.issued1398-10-11fa_IR
dc.date.submitted2019-10-13en_US
dc.date.submitted1398-07-21fa_IR
dc.identifier.citationBastami, R., Aghajani Bazzazi, A., Hamidian Shoormasti, H., Ahangari, K.. (2020). Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks. Journal of Mining and Environment, 11(1), 281-300. doi: 10.22044/jme.2019.9027.1790en_US
dc.identifier.issn2251-8592
dc.identifier.issn2251-8606
dc.identifier.urihttps://dx.doi.org/10.22044/jme.2019.9027.1790
dc.identifier.urihttp://jme.shahroodut.ac.ir/article_1662.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/242783
dc.description.abstractThe use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (GEP), linear multivariate regression (LMR), and non-linear multivariate regression (NLMR) models. In all models, the ANFO value, number of detonators, Emolite value, hole number, hole length, hole diameter, burden, spacing, stemming, sub-drilling, specific gravity of rock, hardness, and uniaxial compressive strength are used as the input parameters. The ANN model results in the test stage indicating a higher correlation coefficient (0.954) and a lower root mean square error (973) compared to the other models. In addition, it has a better conformity with the real blasting costs in comparison with the other models. Although the ANNs method is regarded as one of the intelligent and powerful techniques in parameter prediction, its most important fault is its inability to provide mathematical equations for engineering operations. In contrast, the GEP model exhibits a reliable output by presenting a mathematical equation for BC prediction with a correlation coefficient of 0.933 and a root mean square error of 1088. Based on the sensitivity analysis, the spacing and ANFO values have the maximum and minimum effects on the BC function, respectively. The number of detonators, Emolite value, hole number, specific gravity, hardness, and rock uniaxial compressive strength have a positive correlation with BC, while the ANFO value, hole length, hole diameter, burden, spacing, stemming, and sub-drilling have a negative correlation with BC.en_US
dc.format.extent6579
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of Mining and Environmenten_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jme.2019.9027.1790
dc.subjectBlasting Costen_US
dc.subjectLimestone Minesen_US
dc.subjectGene Expressionen_US
dc.subjectNonlinear Multivariate Regressionen_US
dc.subjectArtificial Neural Networken_US
dc.subjectMine Economic and Managementen_US
dc.titlePrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networksen_US
dc.typeTexten_US
dc.typeOriginal Research Paperen_US
dc.contributor.departmentDepartment of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.en_US
dc.contributor.departmentDepartment of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran.en_US
dc.contributor.departmentDepartment of Mining Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.en_US
dc.contributor.departmentDepartment of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.en_US
dc.citation.volume11
dc.citation.issue1
dc.citation.spage281
dc.citation.epage300


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد