• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Petroleum Science and Technology
    • Volume 5, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Petroleum Science and Technology
    • Volume 5, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluating Different Approaches to Permeability Prediction in a Carbonate Reservoir

    (ندگان)پدیدآور
    Khoshbakht, FarhadMohammadnia, MohammadRahimiBahar, Ali Akbarbeiraghdar, Yousef
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Permeability can be directly measured using cores taken from the reservoir in the laboratory. Due to high cost associated with coring, cores are available in a limited number of wells in a field. Many empirical models, statistical methods, and intelligent techniques were suggested to predict permeability in un-cored wells from easy-to-obtain and frequent data such as wireline logs. The main objective of this study is to assess different approaches to the prediction of the estimation of permeability in a heterogeneous carbonate reservoir, i.e. Fahliyan formation in the southwest of Iran. The considered methods may be categorized in four groups, namely a) empirical models (Timur and Dual-Water), b) regression analysis (simple and multiple), c) clustering methods like MRGC (multi-resolution graph-based clustering), SOM (self organizing map), DC (dynamic clustering) and AHC (ascending hierarchical clustering), and d) artificial intelligence techniques such as ANN (artificial neural network), fuzzy logic, and neuro-fuzzy. This study shows that clustering techniques predict permeability in a heterogeneous carbonate better than other examined approaches. Among four assessed clustering methods, SOM performed better and correctly predicted local variations. Artificial intelligence techniques are average in modeling permeability. However, empirical equations and regression methods are not capable of predicting permeability in the studied reservoir. The constructed and validated SOM model with 6×9 clusters was selected to predict permeability in the blind test well of the studied field. In this well, the predicted permeability was in good agreement with MDT and core derived permeability.
    کلید واژگان
    Permeability
    Carbonate Reservoir
    Clustering
    Intelligent
    Experimental Correlation

    شماره نشریه
    1
    تاریخ نشر
    2015-03-01
    1393-12-10
    ناشر
    Research Institute of Petroleum Industry (RIPI)
    سازمان پدید آورنده
    Rerearch Institute of Petroleum Industry, RIPI
    RIPI
    RIPI
    University of Windsor

    شاپا
    2251-659X
    2645-3312
    URI
    https://dx.doi.org/10.22078/jpst.2015.445
    https://jpst.ripi.ir/article_445.html
    https://iranjournals.nlai.ir/handle/123456789/204963

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب