نمایش مختصر رکورد

dc.contributor.authorKhoshbakht, Farhaden_US
dc.contributor.authorMohammadnia, Mohammaden_US
dc.contributor.authorRahimiBahar, Ali Akbaren_US
dc.contributor.authorbeiraghdar, Yousefen_US
dc.date.accessioned1399-07-09T01:43:30Zfa_IR
dc.date.accessioned2020-09-30T01:43:30Z
dc.date.available1399-07-09T01:43:30Zfa_IR
dc.date.available2020-09-30T01:43:30Z
dc.date.issued2015-03-01en_US
dc.date.issued1393-12-10fa_IR
dc.date.submitted2013-05-18en_US
dc.date.submitted1392-02-28fa_IR
dc.identifier.citationKhoshbakht, Farhad, Mohammadnia, Mohammad, RahimiBahar, Ali Akbar, beiraghdar, Yousef. (2015). Evaluating Different Approaches to Permeability Prediction in a Carbonate Reservoir. Journal of Petroleum Science and Technology, 5(1), 79-90. doi: 10.22078/jpst.2015.445en_US
dc.identifier.issn2251-659X
dc.identifier.issn2645-3312
dc.identifier.urihttps://dx.doi.org/10.22078/jpst.2015.445
dc.identifier.urihttps://jpst.ripi.ir/article_445.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/204963
dc.description.abstractPermeability can be directly measured using cores taken from the reservoir in the laboratory. Due to high cost associated with coring, cores are available in a limited number of wells in a field. Many empirical models, statistical methods, and intelligent techniques were suggested to predict permeability in un-cored wells from easy-to-obtain and frequent data such as wireline logs. The main objective of this study is to assess different approaches to the prediction of the estimation of permeability in a heterogeneous carbonate reservoir, i.e. Fahliyan formation in the southwest of Iran. The considered methods may be categorized in four groups, namely a) empirical models (Timur and Dual-Water), b) regression analysis (simple and multiple), c) clustering methods like MRGC (multi-resolution graph-based clustering), SOM (self organizing map), DC (dynamic clustering) and AHC (ascending hierarchical clustering), and d) artificial intelligence techniques such as ANN (artificial neural network), fuzzy logic, and neuro-fuzzy. This study shows that clustering techniques predict permeability in a heterogeneous carbonate better than other examined approaches. Among four assessed clustering methods, SOM performed better and correctly predicted local variations. Artificial intelligence techniques are average in modeling permeability. However, empirical equations and regression methods are not capable of predicting permeability in the studied reservoir. The constructed and validated SOM model with 6×9 clusters was selected to predict permeability in the blind test well of the studied field. In this well, the predicted permeability was in good agreement with MDT and core derived permeability.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherResearch Institute of Petroleum Industry (RIPI)en_US
dc.relation.ispartofJournal of Petroleum Science and Technologyen_US
dc.relation.isversionofhttps://dx.doi.org/10.22078/jpst.2015.445
dc.subjectPermeabilityen_US
dc.subjectCarbonate Reservoiren_US
dc.subjectClusteringen_US
dc.subjectIntelligenten_US
dc.subjectExperimental Correlationen_US
dc.titleEvaluating Different Approaches to Permeability Prediction in a Carbonate Reservoiren_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentRerearch Institute of Petroleum Industry, RIPIen_US
dc.contributor.departmentRIPIen_US
dc.contributor.departmentRIPIen_US
dc.contributor.departmentUniversity of Windsoren_US
dc.citation.volume5
dc.citation.issue1
dc.citation.spage79
dc.citation.epage90


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد