• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • مجله علمی-پژوهشی رایانش نرم و فناوری اطلاعات
    • دوره 9, شماره 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • مجله علمی-پژوهشی رایانش نرم و فناوری اطلاعات
    • دوره 9, شماره 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EGA: An Enhanced Genetic Algorithm for Numerical Functions Optimization

    (ندگان)پدیدآور
    Shahbahrami, AsadollahGhazipour, Kiumars
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    696.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله پژوهشی انگلیسی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    Optimization is the process of making something as good or effective as possible. Optimization problems are used over many fields such as economics, science, industry and engineering. The growing use of optimization makes it essential for researchers in every branch of science and technology. To solve optimization problems many algorithms have been introduced, while achieving a higher quality of results in terms of accuracy and robustness is still an issue. Metaheuristics are widely recognized as efficient approaches for many hard optimization problems. In this study, to achieve a higher quality of results in numerical functions optimization, two new operators named N-digit lock search (NLS) and Two-Math crossover are introduced to enhance the genetic algorithm (GA) as a widely used metaheuristic. The NLS operator is inspired by the N-digit combination lock pattern and enhances the exploitative behavior of the GA by calibrating the current best solution and the relatively new Two-Math crossover operator combines both two-point and arithmetic crossover techniques to guide the overall search process better. The proposed enhanced genetic algorithm (EGA) is tested over 33 benchmark mathematical functions and the results are compared to some population-based, particle swarm optimization (PSO2011) and artificial bee colony (ABC) algorithms, and single-solution based, simulated annealing (SA), pattern search (PS), and vortex search (VS). A problem-based test is performed to compare the performance of the algorithms, which results shows the proposed EGA outperforms all other algorithms, SA, PS, VS, PSO2011 and ABC. In addition, it surprisingly finds the global best points for almost all 33 test functions with a constant value for 2 out of 3 EGA operators.
    کلید واژگان
    Metaheuristics
    Genetic Algorithm
    Function optimization
    global optimization

    شماره نشریه
    1
    تاریخ نشر
    2020-05-21
    1399-03-01
    ناشر
    دانشگاه صنعتی نوشیروانی بابل
    Babol Noshirvani University of Technology
    سازمان پدید آورنده
    Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
    Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.

    شاپا
    2383-1006
    2588-4913
    URI
    http://jscit.nit.ac.ir/article_103663.html
    https://iranjournals.nlai.ir/handle/123456789/195431

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب