• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of System Management
    • Volume 5, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of System Management
    • Volume 5, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Online Mean Shift Detection in Multivariate Quality Control using Boosted Decision Tree learning

    (ندگان)پدیدآور
    Asadi, AbbasFarjami, Yaghoub
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    239.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The rapid development of communication technologies and information and online computers and their usage in processes of the industrial production have facilitated simultaneous monitoring of multiple variables (characteristics) in a process. In this work, we applied boosted decision tree ( DT_boost) and Monte Carlo simulation to propose an efficient method for detecting in-control and out-of-control states in multivariate control processes.In this work, four classifiers (methods) - χ_¯X^2, χ_(X_new)^2, DT_(χ^2 ), T_c– are used for detecting the process control states. Then, with converting detection results these four classifiers, the boosted decision tree is made and provides the ultimate result as the in-control or the out-of-control states. To show how the proposed model works and the superiority of this method over χ_¯X^2, χ_(X_new)^2, DT_(χ^2 ), andT_cmethods, we run it on a standardized trivariate normal process. To compare and evaluate the performance of classifiers, we used ARL functions and the evaluation measures including Accuracy (ACC), Sensitivity (TPR), Specificity (SPC), and Precision (PPV).The findings not only showed the superiority of the proposed method over the tradition Chi-square but also confirmed former results on the efficiency of decision tree for rapid detecting of mean shifts in multivariate processes in which data are gathered automatically.
    کلید واژگان
    Multivariate Quality Control
    Mean Shift Detection
    Boosted Decision Tree learning
    Moving Window

    شماره نشریه
    2
    تاریخ نشر
    2019-04-01
    1398-01-12
    ناشر
    Islamic Azad University Shiraz Branch
    سازمان پدید آورنده
    Ph.D. Candidate, Department of Industrial Management Science and Research Branch, Islamic Azad University, Tehran, Iran
    Department of Computer & IT Engineering, University of Qom

    شاپا
    2322-2301
    2538-1571
    URI
    http://sjsm.iaushiraz.ac.ir/article_668654.html
    https://iranjournals.nlai.ir/handle/123456789/115816

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب