• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Geotechnical Geology
    • Volume 13, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Geotechnical Geology
    • Volume 13, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Introducing a New Artificial Neural Network Model for prediction of the Pressuremeter Modulus in soils of Tehran

    (ندگان)پدیدآور
    Razavi, ShahinGoshtasbi, KamranNoorzad, AliAhangari, Kaveh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.069 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Pressuremeter is one of the most reliable in-situ tests in geotechnical engineering. Soil deformation modulus has been related empirically to the pressuremeter modulus (E ) obtained from the pressurevolume change curve from this test. In general, the pressuremeter test is time-consuming and costly that requires experienced operators. Various parameters might also affect the test results. With these limitations, it is necessary to introduce equations and models for indirect determination of the E. Artificial neural network (ANN) is a very useful technique for modeling complex relationships between input and output data sets. The ANN models often produce more accurate results compared with the linear regression methods. The main purpose of this research is to introduce a new ANN model for prediction of the EPM. The data used in this research is taken from 41 pressuremeter tests in soils of Tehran. In order to estimate EPM, parameters such as grain size distribution, depth of test, and moisture content are considered as input (independent) variables. The coefficient of determination (R2) for the training, validation, and test data sets were 0.736, 0.906, and 0.801, respectively. Acceptable correlations and errors of network predictions in comparison with the actual values of EPM show the accuracy and efficiency of the designed model. Sensitivity analysis revealed that the grain size distribution is the most effective parameter among the variables on the EPM.
    کلید واژگان
    In-situ test
    Soil deformation modulus
    Pressuremeter
    Artificial Neural Network

    شماره نشریه
    2
    تاریخ نشر
    2017-12-01
    1396-09-10
    ناشر
    Islamic Azad University, Zahedan Branch
    سازمان پدید آورنده
    Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
    Department of Mining Engineering, Tarbiat Modares University, Tehran, Iran
    Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
    Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

    شاپا
    1735-8566
    2383-0883
    URI
    http://geotech.iauzah.ac.ir/article_675048.html
    https://iranjournals.nlai.ir/handle/123456789/9760

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب