Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
(ندگان)پدیدآور
Eskandari, FarzadNaghizade Ardebili, SimaNaderi, DanaMahdavi, MohammadFakhrae, Aliنوع مدرک
TextApplicable
زبان مدرک
Englishچکیده
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framework. Also, the optimal properties of estimators have been considered. Finallly, we have studied a real heterogeneous and unstructured data using the KPR model.
کلید واژگان
COVID-19nonparametric estimation
Kernel polynomial regression model
pridiction analysis
graphical model.
General
شماره نشریه
1تاریخ نشر
2020-08-011399-05-11
سازمان پدید آورنده
Allameh Tabataba'i UniversityNational Organization for Education Testing
Allameh Tabataba'i University
Allameh Tabataba'i University
Allameh Tabataba'i University




