• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Optimization in Industrial Engineering
    • Volume 15, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Optimization in Industrial Engineering
    • Volume 15, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Daily Rainfall Forecasting Using Meteorology Data with Long Short-Term Memory (LSTM) Network

    (ندگان)پدیدآور
    Chai, Soo SeeGoh, Kok Luong
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    586.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Manuscript
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Rainfall is a natural climatic phenomenon and prediction of its value is crucial for weather forecasting. For time series data forecasting, the Long Short-Term Memory (LSTM) network is shown to be superior as compared to other machine learning algorithms. Therefore, in this research work, a LSTM network is developed to predict daily average rainfall values using meteorological data obtained from the Malaysian Meteorological Department for Kuching, Sarawak, Malaysia. Six daily meteorology data, namely, minimum temperature (°C), maximum temperature (°C), mean temperature (°C), mean wind speed (m/s), mean sea level pressure (hPa) and mean relative humidity (%) from the year 2009 to 2013 were used as the input of the LSTM prediction model. The accuracy of the predicted daily average rainfall was assessed using coefficient determinant (R2) and Root Mean Square Error (RMSE). Contrary to the common practice of dividing the whole available data set into training, validation and testing sub-sets, the developed LSTM model in this study was applied to forecast the daily average rainfall for the month December 2013 while training was done using the data prior of this month. An analysis on the testing data showed that, the data is more spread out in the testing set as compared to the training data. As LSTM requires the right setting of hyper-parameters, an analysis on the effects of the number of maximum epochs and the mini-batch size on the rainfall prediction accuracy were carried out in this study. From the experiments, a five layers LSTM model with number of maximum epoch of 10 and mini-batch size of 100 managed to achieve the best prediction at an average RMSE of 20.67 mm and R2 = 0.82.
    کلید واژگان
    Social force model
    crowd evacuation simulation
    NETLOGO
    microscopic simulation

    شماره نشریه
    1
    تاریخ نشر
    2022-03-01
    1400-12-10
    ناشر
    QIAU
    سازمان پدید آورنده
    Faculty of Computer Science and Information Technology, University of Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
    International College of Advanced Technology Sarawak (i-CATS), Kuching, Sarawak, Malaysia

    شاپا
    2251-9904
    2423-3935
    URI
    https://dx.doi.org/10.22094/joie.2021.1941252.1899
    http://www.qjie.ir/article_686436.html
    https://iranjournals.nlai.ir/handle/123456789/892549

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب