• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فصل نامه علمی پژوهشی مهندسی پزشکی زیستی
    • دوره 9, شماره 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فصل نامه علمی پژوهشی مهندسی پزشکی زیستی
    • دوره 9, شماره 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    آشکارسازی و دسته‌بندی تمام خودکار نواحی مشکوک در تصاویر ترموگرام پستان برای تشخیص زودهنگام سرطان

    (ندگان)پدیدآور
    لشکری, امیراحسانپاک, فاطمهفیروزمند, محمد
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    919.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله کامل پژوهشی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    سرطان پستان رایج­ترین نوع سرطان در بین زنان است. مطالعات پاتولوژیک نشان داد­اند که بیش از80% ناهنجاری ­های پستان در مراحل اولیه خوش­خیم هستند، بنابراین مهم­­ترین مسأله در درمان آن تشخیص زودهنگام است. ترموگرافی مادون­ قرمز پستان یک روش تصویرگیری مبتنی بر ثبت الگوهای توزیع دمایی بافت پستان است و در مقایسه با ماموگرافی پستان به دلیل غیرتهاجمی، غیرتماسی، غیرفعال بودن و عدم استفاده از تابش یونیزان روشی بسیار مناسب درتشخیص زودهنگام سلول­ های سرطانی است. در این مقاله روشی به ­منظور آشکارسازی خودکار نواحی مشکوک در تصاویر ترموگرام پستان با هدف کمک رساندن به پزشکان در تشخیص زودهنگام  این سرطان  ارائه شده است،­ به­ نحوی که دقت و صحت را افزایش داده و درصد پذیرش اشتباه را کاهش می دهد. این الگوریتم شامل 4 بخش اصلی پردازش تصویر، استخراج ویژگی، انتخاب ویژگی و طبقه­­بندی است. در مرحله­­ی پردازش، ابتدا براساس عملیاتی تمام خودکار، ناحیه­­ی مطلوب تعیین شده، کیفیت تصاویر ارتقاء یافته و سپس پستان راست و چپ از یکدیگر جدا می­­شوند. سپس درایه­های ماتریس تصویر، نرمال­­سازی شده و نواحی نسبی مشکوک تعیین می ­شوند. پس از آن و در مرحله­ی­ استخراج ویژگی، ویژگی­­های آماری، ویژگی­­هایی مبتنی بر هیستوگرام، ویژگی­­هایی مبتنی بر ماتریس هم­­وقوعی (GLCM)، ویژگی­­هایی بر اساس مورفولوژی نواحی مشکوک و ویژگی ­هایی در حوزه­­ی فرکانس از هر یک از نواحی بخش­­بندی شده­ی پستان­ راست و چپ استخراج می­­شوند. در ادامه برای دست­یابی به بهترین ویژگی­­ها، روش­­های انتخاب ویژگی نظیر کم­ترین افزونگی و بیش­ترین ارتباط (mRMR)، انتخاب متوالی روبه جلو (SFS)، انتخاب متوالی روبه عقب (SBS)، انتخاب متوالی سیال روبه جلو (SFFS)، انتخاب متوالی سیال روبه عقب (SFBS) و الگوریتم ژنتیک (GA) به­کار گرفته می­شود. در پایان برای طبقه­­بندی و تعیین معیار استاندارد برای تحلیل دمای عروقی پستان­ها (TH)، روش­­های مختلف طبقه­­بندی مانند AdaBoost، ماشین­­های بردار پشتیبان (SVM)، نزدیک­­ترین همسایه (KNN)، بیزین ساده (NB) و شبکه­­ی عصبی احتمالی (PNN) مورد ارزیابی قرار گرفتند، تا از مناسب ­ترین آن­ها به ­منظور طبقه­­بندی ویژگی­­ها استفاده شود. نتایج به­­دست­ آمده روی پایگاه داده­­ی بومی، بیانگر ­ کارایی قابل­توجه روش پیشنهادی است. با توجه به نتایج، ترکیب mRMR با AdaBoost با بیشینه صحت 92% و ترکیب SFFS با AdaBoost با بیشینه صحت 88%، به­ترتیب بهترین ترکیبات به­­دست­ آمده روی تصاویر پستان راست و چپ ارزیابی شدند.
    کلید واژگان
    سرطان پستان
    ترموگرافی پستان
    ترموگرام
    انتخاب ویژگی
    طبقه‌بندی
    پردازش تصاویر پزشکی

    شماره نشریه
    1
    تاریخ نشر
    2015-03-21
    1394-01-01
    ناشر
    انجمن مهندسی پزشکی ایران
    Iranian Society for Biomedical Engineering
    سازمان پدید آورنده
    دکتری مهندسی پزشکی، پژوهشکده مهندسی برق و فناوری اطلاعات، سازمان پژوهش های علمی و صنعتی ایران، تهران
    همکار طرح، گروه بیوالکتریک، پژوهشکده مهندسی برق و فناوری اطلاعات، سازمان پژوهش های علمی و صنعتی ایران، تهران
    استادیار، گروه بیوالکتریک، پژوهشکده مهندسی برق و فناوری اطلاعات، سازمان پژوهش های علمی و صنعتی ایران، تهران

    شاپا
    5869-2008
    9685-8006
    URI
    https://dx.doi.org/10.22041/ijbme.2016.15856
    http://www.ijbme.org/article_15856.html
    https://iranjournals.nlai.ir/handle/123456789/85219

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب